Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39230362

RESUMO

We describe the design of a Thomson scattering (TS) diagnostic to be used on the SMall Aspect Ratio Tokamak (SMART). SMART is a spherical tokamak being commissioned in Spain that aims to explore positive triangularity and negative triangularity plasma scenarios at a low aspect ratio. The SMART TS diagnostic is designed to operate at high spatial resolution, 6 mm scattering length in the low-field side and 9 mm in the high-field side regions, and a wide dynamic range, electron temperature from 1 eV to 1 keV and density from 5×1018m-3 to 1×1020m-3, to resolve large gradients formed at the plasma edge and in the scrape-off layer (SOL) under different triangularities and low aspect ratios. A 2 J @1064 nm laser will be used that is capable of operating in the burst mode at 1, 2, and 4 kHz to investigate fast phenomena and at 30 Hz to study 1 s (or more) long discharges. The scattered light will be collected over an angular range of 60° - 120° from 28 spatial points in the midplane covering the entire plasma width and the outer midplane SOL. Each scattering signal will be spectrally resolved on five wavelength channels of a polychromator to obtain the electron temperature measurement. We will also present a method to monitor in situ laser alignment in the core during calibrations and plasma operations.

2.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39269240

RESUMO

A multi-energy soft x-ray diagnostic is planned to operate in the small aspect ratio tokamak (SMART), consisting of five cameras: one for core measurements, two for edge, and two for divertors. Each camera is equipped with four absolute extreme ultra-violet diodes, with three of them filtered by Ti and Al foils for C and O line emissions, respectively, and Be foils for temperature measurements. In addition, two spectrometers will be installed with a vertical line of sight for impurity control. This study introduces a synthetic model designed to characterize radiated power and soft x-ray emissions. The developed code extracts the radiated power and Zeff values by leveraging distributions of electron density, temperatures, and impurity concentrations. The investigation is centered on the predicted scenarios of SMART's first phase of operation (Ip = 100 kA; Bt = 0.1 T), employing a double-null configuration with positive and negative triangularity. The anticipated impurities encompass C (1%) and Fe (0.01%) from the vessel, as well as O and N (0.1%) from air and water. For simplicity, the distribution is assumed to be homogeneous within the plasma, considering different mixtures with Zeff values ranging between 1 and 2. Finally, the model estimates signal strength for the diagnostic design, proving its feasibility.

3.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39105600

RESUMO

Recent experiments at the ASDEX Upgrade tokamak have provided the first ever measurements from the imaging heavy-ion beam probe. In this work, we show that the developed simulation framework can reproduce qualitatively the measurement's observed shape and position. Quantitatively, we demonstrate that the model reproduces, within the experimental uncertainties, the observed signal levels. A detailed explanation of the synthetic model is presented, along with the calibration of the optical setup that reproduces the measurements.

4.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39207190

RESUMO

A set of magnetic diagnostics has been designed, manufactured, and calibrated for the first operational phase of the small aspect ratio tokamak. The sensor suite comprises of Rogowski coils; 2D magnetic probes; and poloidal, saddle, and diamagnetic flux loops. A set of continuous Rogowski coils has been manufactured for the measurement of plasma current and induced eddy currents in conductive elements. A set of flux loops and magnetic probes will be used as input for the reconstruction of the magnetohydrodynamic equilibrium. The quantity and position of these sensors have been verified to be sufficient with synthetic equilibrium reconstructions using the equilibrium fitting code and baseline scenarios computed with the Fiesta code. These sensors will also be used as input for the real-time control system, and magnetic probes will be used for the detection of plasma instabilities. The calibration procedure for the magnetic probes is described, and the results are shown. The signal conditioning and data acquisition systems are described.

5.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39133086

RESUMO

Coherence Imaging Charge Exchange Recombination Spectroscopy (CICERS) is an imaging diagnostic installed in Wendelstein 7-X from which 2D maps of ion temperature (Ti) and impurity density (nZ) are obtained. The improved spatial resolution and coverage, as compared to standard Charge eXchange Recombination Spectroscopy (CXRS), with which these parameters can be assessed, come at the expense of spectral resolution, requiring the development of new strategies to isolate the active charge exchange contribution from passive and Bremsstrahlung radiation. In this work, a new approach based on the modeling of background radiation is presented and applied to the derivation of 2D Ti maps. These are compared to the Ti profiles derived from standard CXRS, which found excellent agreement up to the edge (ρ > 0.8). The CICERS view is implemented in the pyFIDAsim code, which is used to provide further insight into the spatial localization of the radiation as measured by the diagnostic. Moreover, an absolute intensity calibration is carried out, and, coupled with pyFIDAsim, the first 2D nC maps are obtained and validated against CXRS data.

6.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39136650

RESUMO

This paper presents an overview of recent hardware extensions and data analysis developments to the Wendelstein 7-X visible core spectroscopy systems. These include upgrades to prepare the in-vessel components for long-pulse operation, nine additional spectrometers, a new line of sight array for passive spectroscopy, and a coherence imaging charge exchange spectroscopy diagnostic. Progress in data analysis includes ion temperatures and densities from multiple impurity species, a statistical comparison with x-ray crystal spectrometer measurements, neutral density measurements from thermal passive Balmer-alpha emission, and a Bayesian analysis of active hydrogen emission, which is able to infer electron density and main ion temperature profiles.

7.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39078239

RESUMO

Ion temperature, rotation, and density are key parameters to evaluate the performance of present and future fusion reactors. These parameters are critical for understanding ion heat, momentum, and particle transport, making it mandatory to properly diagnose them. A common technique to measure these properties is charge exchange recombination spectroscopy (CXRS). For characterizing positive and negative triangularity plasmas at the small aspect ratio tokamak, a poloidal array of gas puff based CXRS diagnostics will be measuring the ion properties in different poloidal positions. In this work, the modeling of the expected signal and spatial coverage using the FIDASIM code is presented. Furthermore, the design and characterization of the low field side midplane CXRS diagnostic are described. Each diagnostic is composed of a gas injection system, an optical system that collects the light emitted by the plasma, and a spectrometer. These systems will provide ion temperature, rotation, and density with a radial resolution of 3.75 mm and a temporal resolution of 2.2 ms.

8.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38206100

RESUMO

The imaging heavy ion beam probe (i-HIBP) diagnostic has been successfully commissioned at ASDEX Upgrade. The i-HIBP injects a primary neutral beam into the plasma, where it is ionized, leading to a fan of secondary (charged) beams. These are deflected by the magnetic field of the tokamak and collected by a scintillator detector, generating a strike-line light pattern that encodes information on the density, electrostatic potential, and magnetic field of the plasma edge. The first measurements have been made, demonstrating the proof-of-principle of this diagnostic technique. A primary beam of 85/87Rb has been used with energies ranging between 60 and 72 keV and extracted currents up to 1.5 mA. The first signals have been obtained in experiments covering a wide range of parameter spaces, with plasma currents (Ip) between 0.2 and 0.8 MA and on-axis toroidal magnetic field (Bt) between 1.9 and 2.7 T. Low densities appear to be critical for the performance of the diagnostic, as signals are typically observed only when the line integrated density is below 2.0-3.0 × 1019 m-2 in the central interferometer chord, depending on the plasma shape. The strike line moves as expected when Ip is ramped, indicating that current measurements are possible. Additionally, clear dynamics in the intensity of the strike line are often observed, which might be linked to changes in the edge profile structure. However, the signal-to-background ratio of the signals is hampered by stray light, and the image guide degradation is due to neutron irradiation. Finally, simulations have been carried out to investigate the sensitivity of the expected signals to plasma density and temperature. The results are in qualitative agreement with the experimental observations, suggesting that the diagnostic is almost insensitive to fluctuations in the temperature profile, while the signal level is highly determined by the density profile due to the beam attenuation.

9.
Rev Sci Instrum ; 93(9): 093511, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182500

RESUMO

A new concept for velocity space thermal ion loss detection is presented. This diagnostic provides pitch angle resolved measurements that are unfeasible with current diagnostics. It uses the same detection principle as the Fast-Ion Loss Detector with a scintillator as the active component and includes a double slit configuration to measure simultaneously the escaping counter- and co-current ions. Simulations show a gyroradius range between 0.15 and 1.00 cm with a resolution below 0.15 cm (for a gyroradius of 1 cm) and a pitch angle range between 30° and 150° with a resolution below 8° for both counter- and co-current ions. The formation of a sheath in front of the detector and its associated electric field may impact the detection principle. Preliminary simulations with a homogeneous electric field show a decrease in the measurable velocity space range, whereas the gyroradius and pitch angle resolution barely change. The strike map is sensitive to the sheath electric field.

10.
Rev Sci Instrum ; 92(4): 043554, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243403

RESUMO

An Imaging Neutral Particle Analyzer (INPA) diagnostic has been designed for the ASDEX Upgrade (AUG) tokamak. The AUG INPA diagnostic will measure fast neutrals escaping the plasma after charge exchange reactions. The neutrals will be ionized by a 20 nm carbon foil and deflected toward a scintillator by the local magnetic field. The use of a neutral beam injector (NBI) as an active source of neutrals will provide radially resolved measurements, while the use of a scintillator as an active component will allow us to cover the whole plasma along the NBI line with unprecedented phase-space resolution (<12 keV and 8 cm) and a fast temporal response (up to 1 kHz with the high resolution acquisition system and above 100 kHz with the low resolution one), making it suitable to study localized fast-ion redistributions in phase space.

11.
Rev Sci Instrum ; 92(4): 043558, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243424

RESUMO

A synthetic fast-ion loss (FIL) detector and an imaging Heavy Ion Beam Probe (i-HIBP) have been implemented in the 3D hybrid kinetic-magnetohydrodynamic code MEGA. First synthetic measurements from these two diagnostics have been obtained for neutral beam injection-driven Alfvén Eigenmode (AE) simulated with MEGA. The synthetic FILs show a strong correlation with the AE amplitude. This correlation is observed in the phase-space, represented in coordinates (Pϕ, E), being toroidal canonical momentum and energy, respectively. FILs and the energy exchange diagrams of the confined population are connected with lines of constant E', a linear combination of E and Pϕ. First i-HIBP synthetic signals also have been computed for the simulated AE, showing displacements in the strike line of the order of ∼1 mm, above the expected resolution in the i-HIBP scintillator of ∼100 µm.

12.
Phys Rev Lett ; 121(2): 025002, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085760

RESUMO

The acceleration of beam ions during edge localized modes (ELMs) in a tokamak is observed for the first time through direct measurements of fast-ion losses in low collisionality plasmas. The accelerated beam-ion population exhibits well-localized velocity-space structures which are revealed by means of tomographic inversion of the measurement, showing energy gains of the order of tens of keV. This suggests that the ion acceleration results from a resonant interaction between the beam ions and parallel electric fields arising during the ELM. Orbit simulations are carried out to identify the mode-particle resonances responsible for the energy gain in the particle phase space. The observation motivates the incorporation of a kinetic description of fast particles in ELM models and may contribute to a better understanding of the mechanisms responsible for particle acceleration, ubiquitous in astrophysical and space plasmas.

13.
Rev Sci Instrum ; 88(7): 073508, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28764552

RESUMO

A new core charge exchange recombination spectroscopy diagnostic has been installed in the ASDEX Upgrade tokamak that is capable of measuring the impurity ion temperature, toroidal rotation, and density on both the low field side (LFS) and high field side (HFS) of the plasma. The new system features 48 lines-of-sight (LOS) with a radial resolution that varies from ±2 cm on the LFS down to ±0.75 cm on the HFS and has sufficient signal to run routinely at 10 ms and for special circumstances down to 2.5 ms integration time. The LFS-HFS ion temperature profiles provide an additional constraint on the magnetic equilibrium reconstruction, and the toroidal rotation frequency profiles are of sufficiently high quality that information on the poloidal velocity can be extracted from the LFS-HFS asymmetry. The diagnostic LOS are coupled to two flexible-wavelength spectrometers such that complete LFS-HFS profiles from two separate impurities can be imaged simultaneously, albeit with reduced radial coverage. More frequently, the systems measure the same impurity providing very detailed information on the chosen species. Care has been taken to calibrate the systems as accurately as possible and to include in the data analysis any effects that could lead to spurious temperatures or rotations.

14.
Rev Sci Instrum ; 88(4): 043103, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28456224

RESUMO

In this work, a new type of high through-put Czerny-Turner spectrometer has been developed which allows us to acquire multiple channels simultaneously with a repetition time on the order of 10 µs at different wavelengths. The spectrometer has been coupled to the edge charge exchange recombination system at ASDEX Upgrade which has been recently refurbished with new lines of sight. Construction features, calibration methods, and initial measurements obtained with the new setup will be presented.

15.
Rev Sci Instrum ; 87(11): 11E528, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910416

RESUMO

A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line Dα. The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

16.
Rev Sci Instrum ; 84(9): 093505, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24094058

RESUMO

A novel charge-exchange recombination spectroscopy (CXRS) diagnostic method is presented, which uses a simple thermal gas puff for its donor neutral source, instead of the typical high-energy neutral beam. This diagnostic, named gas puff CXRS (GP-CXRS), is used to measure ion density, velocity, and temperature in the tokamak edge/pedestal region with excellent signal-background ratios, and has a number of advantages to conventional beam-based CXRS systems. Here we develop the physics basis for GP-CXRS, including the neutral transport, the charge-exchange process at low energies, and effects of energy-dependent rate coefficients on the measurements. The GP-CXRS hardware setup is described on two separate tokamaks, Alcator C-Mod and ASDEX Upgrade. Measured spectra and profiles are also presented. Profile comparisons of GP-CXRS and a beam based CXRS system show good agreement. Emphasis is given throughout to describing guiding principles for users interested in applying the GP-CXRS diagnostic technique.

17.
Rev Sci Instrum ; 83(10): 103501, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23130787

RESUMO

The charge exchange recombination spectroscopy (CXRS) diagnostics at ASDEX Upgrade (AUG) have been upgraded and extended to provide high-resolution measurements of impurity ion temperature, density, and rotation profiles. The existing core toroidal CXRS diagnostic has been refurbished to increase the level of signal, thus enabling shorter exposure times down to 3.5 ms. Additional lines of sight provide more detailed profiles and enable simultaneous measurements of multiple impurities. In addition, a new CXRS system has been installed, which allows for the measurement of poloidal impurity ion rotation in the plasma edge with high temporal (1.9 ms) and spatial resolution (down to 5 mm). A new wavelength correction method has been implemented to perform in situ wavelength calibrations on a shot-to-shot basis. Absolute measurements of the poloidal impurity ion rotation with uncertainties smaller than 1.5 km/s have been obtained. Comparison of all the CXRS measurements provides a consistency check of the diagnostics and good agreement has been found for all of the CXRS systems.

18.
Phys Rev Lett ; 107(21): 215003, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22181890

RESUMO

Observations in the ASDEX Upgrade tokamak show a correlation between the gradient of the intrinsic toroidal rotation profile and the logarithmic gradient of the electron density profile. The intrinsic toroidal rotation in the center of the plasma reverses from co- to countercurrent when the logarithmic density gradients are large, and the turbulence is either dominated by trapped electron modes or is at the transition between ion temperature gradient and trapped electron modes. A study based on local gyrokinetic calculations suggests that the dominant trend in the observations can be explained by the combination of residual stresses produced by E × B and profile shearing mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA