Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38067395

RESUMO

The application of artificial intelligence to improve the access of cancer patients to high-quality medical care is one of the goals of modern medicine. Pathology constitutes the foundation of modern oncologic treatment, and its role has expanded far beyond diagnosis into predicting treatment response and overall survival. However, the funding of pathology is often an afterthought in resource-scarce medical systems. The increased digitalization of pathology has paved the way towards the potential use of artificial intelligence tools for improving pathologist efficiency and extracting more information from tissues. In this review, we provide an overview of the main research directions intersecting with artificial intelligence and pathology in relation to oncology, such as tumor classification, the prediction of molecular alterations, and biomarker quantification. We then discuss examples of tools that have matured into clinical products and gained regulatory approval for clinical use. Finally, we highlight the main hurdles that stand in the way of the digitalization of pathology and the application of artificial intelligence in pathology while also discussing possible solutions.

2.
Diagnostics (Basel) ; 13(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37510069

RESUMO

Breast cancer is the most prevalent neoplasia among women, with early and accurate diagnosis critical for effective treatment. In clinical practice, however, the subjective nature of histological grading of infiltrating ductal adenocarcinoma of the breast (DAC-NOS) often leads to inconsistencies among pathologists, posing a significant challenge to achieving optimal patient outcomes. Our study aimed to address this reproducibility problem by leveraging artificial intelligence (AI). We trained a deep-learning model using a convolutional neural network-based algorithm (CNN-bA) on 100 whole slide images (WSIs) of DAC-NOS from the Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) dataset. Our model demonstrated high precision, sensitivity, and F1 score across different grading components in about 17.5 h with 19,000 iterations. However, the agreement between the model's grading and that of general pathologists varied, showing the highest agreement for the mitotic count score. These findings suggest that AI has the potential to enhance the accuracy and reproducibility of breast cancer grading, warranting further refinement and validation of this approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...