Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 181(16): 4825-33, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10438751

RESUMO

Rhodobacter sphaeroides is a photosynthetic bacterium which swims by rotating a single flagellum in one direction, periodically stopping, and reorienting during these stops. Free-swimming R. sphaeroides was examined by both differential interference contrast (DIC) microscopy, which allows the flagella of swimming cells to be seen in vivo, and tracking microscopy, which tracks swimming patterns in three dimensions. DIC microscopy showed that when rotation stopped, the helical flagellum relaxed into a high-amplitude, short-wavelength coiled form, confirming previous observations. However, DIC microscopy also revealed that the coiled filament could rotate slowly, reorienting the cell before a transition back to the functional helix. The time taken to reform a functional helix depended on the rate of rotation of the helix and the length of the filament. In addition to these coiled and helical forms, a third conformation was observed: a rapidly rotating, apparently straight form. This form took shape from the cell body out and was seen to form directly from flagella that were initially in either the coiled or the helical conformation. This form was always significantly longer than the coiled or helical form from which it was derived. The resolution of DIC microscopy made it impossible to identify whether this form was genuinely in a straight conformation or was a low-amplitude, long-wavelength helix. Examination of the three-dimensional swimming pattern showed that R. sphaeroides changed speed while swimming, sometimes doubling the swimming speed between stops. The rate of acceleration out of stops was also variable. The transformations in waveform are assumed to be torsionally driven and may be related to the changes in speed measured in free-swimming cells. The roles of and mechanisms that may be involved in the transformations of filament conformations and changes in swimming speed are discussed.


Assuntos
Flagelos/fisiologia , Rhodobacter sphaeroides/fisiologia , Aceleração , Microscopia de Interferência/métodos , Microscopia de Vídeo/métodos , Movimento , Rhodobacter sphaeroides/ultraestrutura
2.
Appl Environ Microbiol ; 63(9): 3474-9, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9292997

RESUMO

Escherichia coli bacteria have been observed to swim along a glass surface for several minutes at a time. Settling velocities of nonmotile cells and a computer simulation of motile cells confirmed that an attractive force kept the bacteria near the surface. The goal of this study was to evaluate whether this attractive force could be explained by reversible adhesion of E. coli to the surface in the secondary energy minimum, according to the theory of Derjaguin, Landan, Verwey, and Overbeek (DLVO theory). This theory describes interactions between colloidal particles by combining attractive van der Waals forces with repulsive electrostatic forces. A three-dimensional-tracking microscope was used to follow both wild-type and smooth-swimming E. coli bacteria as they interacted with a glass coverslip in media of increasing ionic strengths, which corresponded to increasing depths of the secondary energy minimum. We found no quantifiable changes with ionic strength for either the tendencies of individual bacteria to approach the surface or the overall times bacteria spent near the surface. One change in bacterial behavior which was observed with the change in ionic strength was that the diameters of the circles which the smooth-swimming bacteria traced out on the glass increased in low-ionic-strength solution.


Assuntos
Escherichia coli/fisiologia , Aderência Bacteriana/fisiologia , Meios de Cultura , Vidro , Microscopia/métodos , Modelos Biológicos , Movimento/fisiologia , Concentração Osmolar , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...