Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(24): 9350-9359, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37277115

RESUMO

In search for chemically stable americium compounds with high power densities for radioisotope sources for space applications, AmVO3 and AmVO4 were prepared by a solid-state reaction. We present here their crystal structure at room temperature solved by powder X-ray diffraction combined with Rietveld refinement. Their thermal and self-irradiation stabilities have been studied. The oxidation states of americium were confirmed by the Am M5 edge high-resolution X-ray absorption near-edge structure (HR-XANES) technique. Such ceramics are investigated as potential power sources for space applications like radioisotope thermoelectric generators, and they have to endure extreme conditions including vacuum, high or low temperatures, and internal irradiation. Thus, their stability under self-irradiation and heat treatment in inert and oxidizing atmospheres was tested and discussed relative to other compounds with a high content of americium.

2.
Phys Chem Chem Phys ; 24(46): 28394-28402, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36398581

RESUMO

The study of uranium oxides at different conditions is of paramount importance in the nuclear field, especially regarding characterization of the spent nuclear fuel behavior in dry storage scenarios. This paper reports results of XRD and Raman analysis on four powdered samples prepared in order to cover a specific stoichiometry range in UO2+x, i.e. x = 0.24, 0.26, 0.28 and 0.30. XRD results reveal a clear increase of the average tetragonal distortion with the increase in oxidation degree, with the main phase detected for all the samples being a weakly tetragonal phase identified as U3O7-z (c/a ≪ 1.032). U4O9 has not been detected in any sample. The Raman study carried out consists of both qualitative and quantitative analysis. The former, where a profile analysis has been performed on the acquired spectra, shows that the most intense bands (centered at ∼455 and ∼635 cm-1) are actually a doublet each, in agreement with a previous experimental study. Moreover, this work shows, for the first time, that the band at ∼160 cm-1 is also a doublet, which makes its classical assignment no longer obvious. The most important and original results from this study are obtained by applying Quantitative Raman Spectroscopy (QRS). This analysis shows that the second contribution at ∼475 cm-1 to the known T2g mode increases its relative intensity with the oxidation degree. This contribution may be related to the tetragonal distortion occurring in the cubic UO2 lattice due to the addition of interstitial oxygen, based on its comparison with the obtained XRD outcomes. In addition, the so-called "defects band" (centered at around 600 cm-1) presents a remarkable kink, of around 20 cm-1, in its Raman shift between UO2.26 and UO2.28. Such behavior might be directly associated with the observed appearance of the stoichiometric U3O7 phase (c/a = 1.032) for UO2.28 and UO2.30.

3.
CrystEngComm ; 24(36): 6338-6348, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36275942

RESUMO

This paper details the first dedicated production of homogeneous nanocrystalline particles of mixed actinide oxide solid solutions containing americium. The target compositions were U0.75Pu0.20Am0.05O2, U0.90Am0.10O2 and U0.80Am0.20O2. After successful hydrothermal synthesis and chemical characterisation, the nanocrystals were sintered and their structure and behaviour under self-irradiation were studied by powder XRD. Cationic charge distribution of the as-prepared nanocrystalline and sintered U0.80Am0.20O2 materials was investigated applying U M4 and Am M5 edge high energy resolution XANES (HR-XANES). Typical oxidation states detected for the cations are U(iv)/U(v) and Am(iii)/Am(iv). The measured crystallographic swelling was systematically smaller for the as-synthesised nanoparticles than the sintered products. For sintered pellets, the maximal volumetric swelling was about 0.8% at saturation, in line with literature data for PuO2, AmO2, (U,Pu)O2 or (U,Am)O2.

4.
Inorg Chem ; 60(19): 14550-14556, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34524816

RESUMO

In view of safe management of the nuclear wastes, a sound knowledge of the atomic-scale properties of U1-xMxO2+y nanoparticles is essential. In particular, their cation valences and oxygen stoichiometries are of great interest as these properties drive their diffusion and migration behaviors into the environment. Here, we present an in-depth study of U1-xCexO2+y, over the full compositional domain, by combining X-ray diffraction and high-energy resolution fluorescence detection X-ray absorption near-edge structure. We show, on one hand, the coexistence of UIV, UV, and UVI and, on the other hand, that the fluorite structure is maintained despite this charge distribution.

5.
Inorg Chem ; 59(9): 6595-6602, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32282189

RESUMO

AmPO4 was prepared by a solid-state reaction method, and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. The purity of the monazite-like phase was confirmed by spectroscopic (high-resolution solid-state 31P NMR and Raman) and microscopic (SEM-EDX and TEM) techniques. The thermal and self-irradiation stability have been studied. The compound is stable under argon and air atmosphere at least up to 1773 K. It remains crystalline under self-irradiation for circa two months, with a crystallographic volume swelling of ∼1.5%, and then is amorphizing over a year. However, microcrystals are present in the amorphous material even after a two year period of time. All these characteristics are discussed in relation to the potential application of AmPO4 as a stable form of Am in radioisotope power sources for space exploration and of behavior of the monazites under irradiation.

6.
Inorg Chem ; 58(14): 9118-9126, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31246454

RESUMO

Both AmAlO3 and PuAlO3 perovskites have been synthesized and characterized using powder X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and 27Al magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). AmAlO3 perovskite showed a rhombohedral configuration (space group R3̅c) in agreement with previous studies. The effect of americium α-decay on this material has been followed by XRD and 27Al MAS NMR analyses. In a first step, a progressive increase in the level of disorder in the crystalline phase was detected, associated with a significant crystallographic swelling of the material. In a second step, the crystalline AmAlO3 perovskite was progressively converted into amorphous AmAlO3, with a total amorphization occurring after 8 months and 2 × 1018 α-decays/g. For the first time, PuAlO3 perovskite was synthesized with an orthorhombic configuration (space group Imma), showing an interesting parallel to CeAlO3 and PrAlO3 lanthanide analogues. High-temperature XRD was performed and showed a Imma → R3̅c phase transition occurring between 473 and 573 K. The thermal behavior of R3̅c PuAlO3 was followed from 573 to 1273 K, and extrapolation of the data suggests that cubic plutonium perovskite should become stable at around 1850 K (R3̅c → Pm3̅m transition).

7.
Inorg Chem ; 57(8): 4317-4327, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29569908

RESUMO

Americium 241 is a potential alternative to plutonium 238 as an energy source for missions into deep space or to the dark side of planetary bodies. In order to use the 241Am isotope for radioisotope thermoelectric generator or radioisotope heating unit (RHU) production, americium materials need to be developed. This study focuses on the stabilization of a cubic americium oxide phase using uranium as the dopant. After optimization of the material preparation, (Am0.80U0.12Np0.06Pu0.02)O1.8 has been successfully synthesized to prepare a 2.96 g pellet containing 2.13 g of 241Am for fabrication of a small scale RHU prototype. Compared to the use of pure americium oxide, the use of uranium-doped americium oxide leads to a number of improvements from a material properties and safety point of view, such as good behavior under sintering conditions or under alpha self-irradiation. The mixed oxide is a good host for neptunium (i.e., the 241Am daughter element), and it has improved safety against radioactive material dispersion in the case of accidental conditions.

8.
Inorg Chem ; 57(3): 1535-1544, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29327923

RESUMO

For nuclear fuel related applications, the oxygen stoichiometry of mixed oxides U1-yMyO2±x is an essential property as it affects fuel properties and may endanger the safe operation of nuclear reactors. A careful review of the open literature indicates that this parameter is difficult to assess properly and that the nature of the defects, i.e., oxygen vacancies or UV, in aliovalent cation-doped UO2 is still subject to controversy. To confirm the formation of UV, we have investigated the room-temperature stable U1-yLayO2±x phase using several experimental methods (e.g., XRD, XANES, and NMR) confirmed by theoretical calculations. This paper presents the experimental proof of UV and its effect we identified in both electronic and local structure. We observe that UV is formed in quasi-equimolar proportion as LaIII in U1-yLayO2±x (y = 0.06, 0.11, and 0.22) solid solutions. The fluorite structure is maintained despite the cationic substitution, but the local structure is affected as variations of the interatomic distances are found. Therefore, we provide here the definitive proof that the substitution of UIV with LaIII is not accommodated by the creation of O vacancies as has often been assumed. The UO2 fluorite structure compensates the incorporation of an aliovalent cation by the formation of UV in quasi-equimolar proportions.

9.
Sci Rep ; 7(1): 12269, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947745

RESUMO

The detailed characterization of local order and disorder in isometric A2B2O7 crystalline pyrochlores is of significant importance in view of their wide range and sensitive technological applications. Nevertheless, much remains to be understood concerning their atomic scale structures. Here we specifically pinpoint local order and disorder in four stoichiometric Ln2Zr2O7 (Ln = La, Nd, Sm and Eu) pyrochlores using a combination of three standard easily available laboratory techniques: XRD, 17O solid-state MAS NMR and Raman spectroscopy. The evolution of the oxygen sub-lattice identifies specific features (extra 17O NMR signals and Raman bands) which undoubtedly reveal local oxygen order and disorder in these stoichiometric long range ordered crystalline pyrochlores. These results complete the understanding of the atomic scale in these stoichiometric pyrochlores necessitating the need for new microscopic structural models.

10.
Dalton Trans ; 45(18): 7847-55, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27063438

RESUMO

Cubic fluorite-type phases have been reported in the U(IV)O2-Bi2O3 system for the entire compositional range, but an unusual non-linear variation of the lattice parameter with uranium substitution has been observed. In the current extensive investigation of the uranium(iv) oxide-bismuth(iii) oxide system, this behaviour of the lattice parameter evolution with composition has been confirmed and its origin identified. Even under inert atmosphere at 800 °C, U(IV) oxidises to U(V)/U(VI) as a function of the substitution degree. Thus, using a combination of three methods (XRD, XANES and Raman) we have identified the formation of the BiU(V)O4 and Bi2U(VI)O6 compounds, within this series. Moreover, we present here the Rietveld refinement of BiU(V)O4 at room temperature and we report the thermal expansion of both BiU(V)O4 and Bi2U(VI)O6 compounds.

11.
Inorg Chem ; 54(11): 5358-65, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25984750

RESUMO

Uranium-plutonium mixed oxide containing 30% of plutonium is a candidate fuel for several fast neutron and accelerator driven reactor systems. In this work, a detailed structural investigation on sol-gel synthesized stoichiometric U0.7Pu0.3O2.00 and substoichiometric U0.7Pu0.3O2-x, using X-ray diffraction (XRD), oxygen 17 magic angle spinning nuclear magnetic resonance ((17)O MAS NMR) and X-ray absorption spectroscopy is described. As observed by XRD, the stoichiometric U0.7Pu0.3O2.00 is monophasic with a lattice parameter in good agreement with Vegard's law, while the substoichiometric U0.7Pu0.3O2-x material is biphasic. Solid solution ideality in terms of a random distribution of metal atoms is proven for U0.7Pu0.3O2.00 with (17)O MAS NMR. X-ray absorption near-edge structure (XANES) spectroscopy shows the presence of plutonium(III) in U0.7Pu0.3O2-x. Extended X-ray absorption fine-structure (EXAFS) spectroscopy indicates a similar local structure around both cations, and comparison with XRD indicates a close similarity between uranium and plutonium local structures and the long-range ordering.

12.
Inorg Chem ; 53(13): 6928-33, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24926812

RESUMO

A massive interest has been generated lately by the improvement of solid-state magic-angle spinning (MAS) NMR methods for the study of a broad range of paramagnetic organic and inorganic materials. The open-shell cations at the origin of this paramagnetism can be metals, transition metals, or rare-earth elements. Actinide-bearing compounds and their 5f unpaired electrons remain elusive in this intensive research area due to their well-known high radiotoxicity. A dedicated effort enabling the handling of these highly radioactive materials now allows their analysis using high-resolution MAS NMR (>55 kHz). Here, the study of the local structure of a series of actinide dioxides, namely, ThO2, UO2, NpO2, PuO2, and AmO2, using solid-state (17)O MAS NMR is reported. An important increase of the spectral resolution is found due to the removal of the dipolar broadening proving the efficiency of this technique for structural analysis. The NMR parameters in these systems with numerous and unpaired 5f electrons were interpreted using an empirical approach. Single-ion model calculations were performed for the first time to determine the z component of electron spin on each of the actinide atoms, which is proportional to the shifts. A similar variation thereof was observed only for the heavier actinides of this study.

13.
J Am Chem Soc ; 135(42): 15678-81, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24117158

RESUMO

By controlling the water content, a new poly-oxo-metalate species containing 38 uranium centers has been solvothermally synthesized in the presence of benzoic acid in tetrahydrofuran (THF). The {U38} motif contains a distorted UO2 core of fluorite type, stabilized by benzoate and THF molecules. This compound is analogous to the {Pu38} motif and was characterized by X-ray photoelectron spectroscopy and magnetic analyses.

14.
Chemistry ; 19(17): 5324-31, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23325507

RESUMO

Four metal-organic frameworks (MOF) with tetravalent uranium have been solvothermally synthesized by treating UCl4 with rigid dicarboxylate linkers in N,N-dimethylfomamide (DMF). The use of the ditopic ligands 4,4'-biphenyldicarboxylate (1), 2,6-naphthalenedicarboxylate (2), terephthalate (3), and fumarate (4) resulted in the formation of three-dimensional networks based on the hexanuclear uranium-centered motif [U6O4(OH)4(H2O)6]. This motif corresponds to an octahedral configuration of uranium nodes and is also known for thorium in crystalline solids. The atomic arrangement of this specific building unit with organic linkers is similar to that found in the zirconium-based porous compounds of the UiO-66/67 series. The structure of [U6O4(OH)4(H2O)6(L)6]⋅X (L = dicarboxylate ligand; X = DMF) shows the inorganic hexamers connected in a face-centered cubic manner through the ditopic linkers to build up a three-dimensional framework that delimits octahedral (from 5.4 Šfor 4 up to 14.0 Šfor 1) and tetrahedral cavities. The four compounds have been characterized by using single-crystal X-ray diffraction analysis (or powder diffraction analysis for 4). The tetravalent state of uranium has been examined by using XPS and solid-state UV/Vis analyses. The measurement of the Brunauer-Emmett-Teller surface area indicated very low values (Langmuir <300 m(2) g(-1) for 1, <7 m(2) g(-1) for 2-4) and showed that the structures are quite unstable upon removal of the encapsulated DMF solvent.

15.
Inorg Chem ; 51(7): 4352-8, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22428870

RESUMO

A new cerium neodymium oxychloride, Ce1.3Nd0.7O3Cl, has been synthesized by precipitation in a LiCl­CaCl2 molten salt by humid argon sparging. Chemical and structure characterization have been undertaken by powder X-ray diffraction, scanning electron microscopy, high-temperature X-ray diffraction, thermogravimetric analysis, and X-ray photoelectron scattering. This oxychloride crystallizes in space group P4/nmm, a = 3.9848(3) Å and c = 12.467(2) Å, in a new Sillen-type phase represented by the symbol X(2)(4) where "quadruple" fluorite-type layers [M4O6], containing Ce(IV) in "inner" sublayers and both CeIII and NdIII in "outer" sublayers, alternate with double-halide ion sheets. The structure is also described as a stacking of LnOCl and fluorite-type blocks and constitutes the term n = 2 of a possible series (MO2)n(NdOCl)2.


Assuntos
Cério/química , Neodímio/química , Argônio , Cloreto de Cálcio/química , Cloreto de Lítio/química , Microscopia Eletrônica de Varredura , Estrutura Molecular , Espectroscopia Fotoeletrônica , Sais/síntese química , Termogravimetria , Água/química , Difração de Raios X
16.
Inorg Chem ; 50(23): 11865-7, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22034984

RESUMO

An uranium trimesate open framework is built up from trinuclear building blocks (µ(3)-OU(3)) connected to each other by tricarboxylate linkers to generate honeycomb-like 3D topology. This compound was solvothermally synthesized from low-valent uranium in an N,N-dimethylformamide solvent under an inert atmosphere, favoring stabilization of the tetravalent oxidation state, which is confirmed by X-ray photoelectron spectroscopy analysis.

17.
Inorg Chem ; 49(3): 1252-65, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20050599

RESUMO

Despite the recent emergence of a toolbox fitted with microscopic thermodynamic descriptors for predicting the stabilities and speciations of polynuclear complexes in solution, the discovery of novel or unusual type of metal-ligand assemblies in metallosupramolecular chemistry still often relies on serendipity. In order to highlight the novel perspectives offered by a rational exploitation of these thermodynamic parameters, the segmental bis-tridentate ligands L7 and L8 have been designed for providing effective molarities upon reaction with trivalent lanthanides, Ln(III), so small that the saturated binuclear triple-stranded helicates [Ln(2)(Lk)(3)](6+), which obey the well-respected principle of maximum site occupancy, cannot be detected in solution because of their deliberately planned instabilities. The hierarchical evolution of the effective molarities with an increasing number of ligand strands in these complexes indeed favors the formation of the alternative unsaturated single-stranded [Ln(2)(Lk)](6+) and double-stranded [Ln(2)(Lk)(2)](6+) complexes, whose relative speciations in solution depend on the nature of the binding sites introduced into the segmental ligand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...