Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5766, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180432

RESUMO

Electronic synergy between metal ions and organic linkers is a key to engineering molecule-based materials with a high electrical conductivity and, ultimately, metallicity. To enhance conductivity in metal-organic solids, chemists aim to bring the electrochemical potentials of the constituent metal ions and bridging organic ligands closer in a quest to obtain metal-d and ligand-π admixed frontier bands. Herein, we demonstrate the critical role of the metal ion in tuning the electronic ground state of such materials. While VCl2(pyrazine)2 is an electrical insulator, TiCl2(pyrazine)2 displays the highest room-temperature electronic conductivity (5.3 S cm-1) for any metal-organic solid involving octahedrally coordinated metal ions. Notably, TiCl2(pyrazine)2 exhibits Pauli paramagnetism consistent with the specific heat, supporting the existence of a Fermi liquid state (i.e., a correlated metal). This result widens perspectives for designing molecule-based systems with strong metal-ligand covalency and electronic correlations.

2.
Nat Commun ; 13(1): 1462, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304455

RESUMO

Intermetallics represent an important family of compounds, in which insertion of light elements (H, B, C, N) has been widely explored for decades to synthesize novel phases and promote functional materials such as permanent magnets or magnetocalorics. Fluorine insertion, however, has remained elusive so far since the strong reactivity of this atypical element, the most electronegative one, tends to produce the chemical decomposition of these systems. Here, we introduce a topochemical method to intercalate fluorine atoms into intermetallics, using perfluorocarbon reactant with covalent C-F bonds. We demonstrate the potential of this approach with the synthesis of non-stoichiometric mixed anion (Si-F) LaFeSiFx single-crystals, which are further shown to host FeSi-based superconductivity. Fluorine topochemistry on intermetallics is thus proven to be an effective route to provide functional materials where the coexistence of ionic and metallo-covalent blocks, and their interactions through inductive effects, is at the root of their functional properties.

3.
Proc Natl Acad Sci U S A ; 113(48): 13654-13659, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27856753

RESUMO

Our knowledge of the ground state of underdoped hole-doped cuprates has evolved considerably over the last few years. There is now compelling evidence that, inside the pseudogap phase, charge order breaks translational symmetry leading to a reconstructed Fermi surface made of small pockets. Quantum oscillations [Doiron-Leyraud N, et al. (2007) Nature 447(7144):565-568], optical conductivity [Mirzaei SI, et al. (2013) Proc Natl Acad Sci USA 110(15):5774-5778], and the validity of Wiedemann-Franz law [Grissonnache G, et al. (2016) Phys Rev B 93:064513] point to a Fermi liquid regime at low temperature in the underdoped regime. However, the observation of a quadratic temperature dependence in the electrical resistivity at low temperatures, the hallmark of a Fermi liquid regime, is still missing. Here, we report magnetoresistance measurements in the magnetic-field-induced normal state of underdoped YBa2Cu4O8 that are consistent with a T2 resistivity extending down to 1.5 K. The magnitude of the T2 coefficient, however, is much smaller than expected for a single pocket of the mass and size observed in quantum oscillations, implying that the reconstructed Fermi surface must consist of at least one additional pocket.

4.
Sci Adv ; 2(3): e1501657, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27034989

RESUMO

Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature T c is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-T c superconductivity. We have tested the robustness of this correlation between m* and T c by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as T c increases under pressure. This inverse correlation between m* and T c suggests that quantum fluctuations of the charge order enhance m* but do not enhance T c.


Assuntos
Elétrons , Supercondutividade , Temperatura , Cobre/química , Campos Magnéticos , Pressão , Termometria , Temperatura de Transição
5.
Phys Rev Lett ; 110(26): 266601, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23848904

RESUMO

Different instabilities have been speculated for a three-dimensional electron gas confined to its lowest Landau level. The phase transition induced in graphite by a strong magnetic field, and believed to be a charge density wave, is the only experimentally established case of such instabilities. Studying the magnetoresistance in graphite for the first time up to 80 T, we find that the magnetic field induces two successive phase transitions, consisting of two distinct ordered states each restricted to a finite field window. In both states, an energy gap opens up in the out-of-plane conductivity and coexists with an unexpected in-plane metallicity for a fully gap bulk system. Such peculiar metallicity may arise as a consequence of edge-state transport expected to develop in the presence of a bulk gap.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...