Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(16): 9465-9477, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365814

RESUMO

Pre-stimulus endogenous neural activity can influence the processing of upcoming sensory input and subsequent behavioral reactions. Despite it is known that spontaneous oscillatory activity mostly appears in stochastic bursts, typical approaches based on trial averaging fail to capture this. We aimed at relating spontaneous oscillatory bursts in the alpha band (8-13 Hz) to visual detection behavior, via an electroencephalography-based brain-computer interface (BCI) that allowed for burst-triggered stimulus presentation in real-time. According to alpha theories, we hypothesized that visual targets presented during alpha-bursts should lead to slower responses and higher miss rates, whereas targets presented in the absence of bursts (low alpha activity) should lead to faster responses and higher false alarm rates. Our findings support the role of bursts of alpha oscillations in visual perception and exemplify how real-time BCI systems can be used as a test bench for brain-behavioral theories.


Assuntos
Encéfalo , Percepção Visual , Encéfalo/fisiologia , Eletroencefalografia , Estimulação Luminosa , Percepção Visual/fisiologia , Humanos
2.
eNeuro ; 10(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36750362

RESUMO

Shifts in spatial attention are associated with variations in α band (α, 8-14 Hz) activity, specifically in interhemispheric imbalance. The underlying mechanism is attributed to local α-synchronization, which regulates local inhibition of neural excitability, and frontoparietal synchronization reflecting long-range communication. The direction-specific nature of this neural correlate brings forward its potential as a control signal in brain-computer interfaces (BCIs). In the present study, we explored whether long-range α-synchronization presents lateralized patterns dependent on voluntary attention orienting and whether these neural patterns can be picked up at a single-trial level to provide a control signal for active BCI. We collected electroencephalography (EEG) data from a cohort of healthy adults (n = 10) while performing a covert visuospatial attention (CVSA) task. The data show a lateralized pattern of α-band phase coupling between frontal and parieto-occipital regions after target presentation, replicating previous findings. This pattern, however, was not evident during the cue-to-target orienting interval, the ideal time window for BCI. Furthermore, decoding the direction of attention trial-by-trial from cue-locked synchronization with support vector machines (SVMs) was at chance level. The present findings suggest EEG may not be capable of detecting long-range α-synchronization in attentional orienting on a single-trial basis and, thus, highlight the limitations of this metric as a reliable signal for BCI control.


Assuntos
Interfaces Cérebro-Computador , Adulto , Humanos , Estudos de Viabilidade , Eletroencefalografia , Atenção/fisiologia
3.
Eur J Neurosci ; 55(11-12): 3224-3240, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-32745332

RESUMO

Electrical brain oscillations reflect fluctuations in neural excitability. Fluctuations in the alpha band (α, 8-12 Hz) in the occipito-parietal cortex are thought to regulate sensory responses, leading to cyclic variations in visual perception. Inspired by this theory, some past and recent studies have addressed the relationship between α-phase from extra-cranial EEG and behavioural responses to visual stimuli in humans. The latest studies have used offline approaches to confirm α-gated cyclic patterns. However, a particularly relevant implication is the possibility to use this principle online, whereby stimuli are time-locked to specific α-phases leading to predictable outcomes in performance. Here, we aimed at providing a proof of concept for such real-time neurotechnology. Participants performed a speeded response task to visual targets that were presented upon a real-time estimation of the α-phase via an EEG closed-loop brain-computer interface (BCI). According to the theory, we predicted a modulation of reaction times (RTs) along the α-cycle. Our BCI system achieved reliable trial-to-trial phase locking of stimuli to the phase of individual occipito-parietal α-oscillations. Yet, the behavioural results did not support a consistent relation between RTs and the phase of the α-cycle neither at group nor at single participant levels. We must conclude that although the α-phase might play a role in perceptual decisions from a theoretical perspective, its impact on EEG-based BCI application appears negligible.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Humanos , Lobo Parietal/fisiologia , Estimulação Luminosa/métodos , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...