Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CBE Life Sci Educ ; 19(1): ar4, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32004100

RESUMO

Recent studies demonstrate that significant learning gains can be achieved when instructors take intentional steps to address the affective components of learning. While such efforts enhance the outcomes of all students, they are particularly beneficial for students from underrepresented groups and can reduce performance gaps. In the present study, we examined whether intentional efforts to address the affective domain of learning (through growth mindset messaging) can synergize with best practices for addressing the cognitive domain (via active-learning strategies) to enhance academic outcomes in biology courses. We compared the impact of this two-pronged approach (known as dual domain pedagogy, or DDP) with that of two other pedagogies (lecture only or active learning only). Our results demonstrate that DDP is a powerful tool for narrowing performance gaps. DDP, but not active learning, eliminated the performance gap observed between Black and white students in response to lecture. While a significant gap between white and Latin@ students was observed in response to active learning (but not lecture), this gap was reduced by DDP. These findings demonstrate that DDP is an effective approach for promoting a more equitable classroom and can foster learning outcomes that supersede those conferred by active learning alone.


Assuntos
Biologia , Avaliação Educacional , Aprendizagem Baseada em Problemas , Biologia/educação , Humanos , Estudantes
2.
Evol Appl ; 12(1): 93-104, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30622638

RESUMO

Agricultural weeds serve as productive models for studying the genetic basis of rapid adaptation, with weed-adaptive traits potentially evolving multiple times independently in geographically distinct but environmentally similar agroecosystems. Weedy relatives of domesticated crops can be especially interesting systems because of the potential for weed-adaptive alleles to originate through multiple mechanisms, including introgression from cultivated and/or wild relatives, standing genetic variation, and de novo mutations. Weedy rice populations have evolved multiple times through dedomestication from cultivated rice. Much of the genomic work to date in weedy rice has focused on populations that exist outside the range of the wild crop progenitor. In this study, we use genome-wide SNPs generated through genotyping-by-sequencing to compare the evolution of weedy rice in regions outside the range of wild rice (North America, South Korea) and populations in Southeast Asia, where wild rice populations are present. We find evidence for adaptive introgression of wild rice alleles into weedy rice populations in Southeast Asia, with the relative contributions of wild and cultivated rice alleles varying across the genome. In addition, gene regions underlying several weed-adaptive traits are dominated by genomic contributions from wild rice. Genome-wide nucleotide diversity is also much higher in Southeast Asian weeds than in North American and South Korean weeds. Besides reflecting introgression from wild rice, this difference in diversity likely reflects genetic contributions from diverse cultivated landraces that may have served as the progenitors of these weedy populations. These important differences in weedy rice evolution in regions with and without wild rice could inform region-specific management strategies for weed control.

3.
Pest Manag Sci ; 74(6): 1404-1415, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29205860

RESUMO

BACKGROUND: Weed evolution from crops involves changes in key traits, but it is unclear how genetic and phenotypic variation contribute to weed diversification and productivity. Weedy rice is a conspecific weed of rice (Oryza sativa) worldwide. We used principal component analysis and hierarchical clustering to understand how morphologically and evolutionarily distinct US weedy rice populations persist in rice fields in different locations under contrasting management regimes. Further, we used a representative subset of 15 sequence-tagged site fragments of expressed genes from global Oryza to assess genome-wide sequence variation among populations. RESULTS: Crop hull color and crop-overlapping maturity dates plus awns, seed (panicle) shattering (> 50%), pigmented pericarp and stature variation (30.2% of total phenotypic variance) characterize genetically less diverse California weedy rice. By contrast, wild-like hull color, seed shattering (> 50%) and stature differences (55.8% of total phenotypic variance) typify genetically diverse weedy rice ecotypes in Arkansas. CONCLUSION: Recent de-domestication of weedy species - such as in California weedy rice - can involve trait combinations indistinguishable from the crop. This underscores the need for strict seed certification with genetic monitoring and proactive field inspection to prevent proliferation of weedy plant types. In established populations, tillage practice may affect weed diversity and persistence over time. © 2017 Society of Chemical Industry.


Assuntos
Evolução Biológica , Variação Genética , Oryza/anatomia & histologia , Oryza/genética , Fenótipo , Plantas Daninhas/anatomia & histologia , Plantas Daninhas/genética , Arkansas , California , Análise por Conglomerados , Evolução Molecular , Genes de Plantas/genética , Análise de Componente Principal , Controle de Plantas Daninhas/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-28861134

RESUMO

Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

5.
PLoS One ; 11(9): e0162676, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27661982

RESUMO

Domestication is the hallmark of evolution and civilization and harnesses biodiversity through selection for specific traits. In regions where domesticated lines are grown near wild relatives, congeneric sources of aggressive weedy genotypes cause major economic losses. Thus, the origins of weedy genotypes where no congeneric species occur raise questions regarding management effectiveness and evolutionary mechanisms responsible for weedy population success. Since eradication in the 1970s, California growers avoided weedy rice through continuous flood culture and zero-tolerance guidelines, preventing the import, presence, and movement of weedy seeds. In 2003, after decades of no reported presence in California, a weedy rice population was confirmed in dry-seeded fields. Our objectives were to identify the origins and establishment of this population and pinpoint possible phenotypes involved. We show that California weedy rice is derived from a different genetic source among a broad range of AA genome Oryzas and is most recently diverged from O. sativa temperate japonica cultivated in California. In contrast, other weedy rice ecotypes in North America (Southern US) originate from weedy genotypes from China near wild Oryza, and are derived through existing crop-wild relative crosses. Analyses of morphological data show that California weedy rice subgroups have phenotypes like medium-grain or gourmet cultivars, but have colored pericarp, seed shattering, and awns like wild relatives, suggesting that reversion to non-domestic or wild-like traits can occur following domestication, despite apparent fixation of domestication alleles. Additionally, these results indicate that preventive methods focused on incoming weed sources through contamination may miss burgeoning weedy genotypes that rapidly adapt, establish, and proliferate. Investigating the common and unique evolutionary mechanisms underlying global weed origins and subsequent interactions with crop relatives sheds light on how weeds evolve and addresses broader questions regarding the stability of selection during domestication and crop improvement.

6.
BMC Plant Biol ; 16: 101, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27101874

RESUMO

BACKGROUND: The ability to grow in phosphorus-depleted soils is an important trait for rice cultivation in many world regions, especially in the tropics. The Phosphorus Starvation Tolerance 1 (PSTOL1) gene has been identified as underlying the ability of some cultivated rice varieties to grow under low-phosphorus conditions; however, the gene is absent from other varieties. We assessed PSTOL1 presence/absence in a geographically diverse sample of wild, domesticated and weedy rice and sequenced the gene in samples where it is present. RESULTS: We find that the presence/absence polymorphism spans cultivated, weedy and wild Asian rice groups. For the subset of samples that carry PSTOL1, haplotype sequences suggest long-term selective maintenance of functional alleles, but with repeated evolution of loss-of-function alleles through premature stops and frameshift mutations. The loss-of-function alleles have evolved convergently in multiple rice species and cultivated rice varieties. Greenhouse assessments of plant growth under low- and high-phosphorus conditions did not reveal significant associations with PSTOL1 genotype variation; however, the striking signature of balancing selection at this locus suggests that further phenotypic characterizations of PSTOL1 allelic variants is warranted and may be useful for crop improvement. CONCLUSIONS: These findings suggest balancing selection for both functional and non-functional PSTOL1 alleles that predates and transcends Asian rice domestication, a pattern that may reflect fitness tradeoffs associated with geographical variation in soil phosphorus content.


Assuntos
Adaptação Fisiológica/genética , Genes de Plantas/genética , Oryza/genética , Fósforo/metabolismo , Alelos , Códon sem Sentido , Evolução Molecular , Mutação da Fase de Leitura , Genótipo , Geografia , Oryza/classificação , Filogenia , Polimorfismo Genético , Seleção Genética , Análise de Sequência de DNA , Solo/química , Especificidade da Espécie , Fatores de Tempo
7.
Mol Ecol ; 24(13): 3329-44, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26031196

RESUMO

Many different crop species were selected for a common suite of 'domestication traits', which facilitates their use for studies of parallel evolution. Within domesticated rice (Oryza sativa), there has also been independent evolution of weedy strains from different cultivated varieties. This makes it possible to examine the genetic basis of parallel weed evolution and the extent to which this process occurs through shared genetic mechanisms. We performed comparative QTL mapping of weediness traits using two recombinant inbred line populations derived from crosses between an indica crop variety and representatives of each of the two independently evolved weed strains found in US rice fields, strawhull (S) and blackhull awned (B). Genotyping-by-sequencing provided dense marker coverage for linkage map construction (average marker interval <0.25 cM), with 6016 and 13 730 SNPs mapped in F5 lines of the S and B populations, respectively. For some weediness traits (awn length, hull pigmentation and pericarp pigmentation), QTL mapping and sequencing of underlying candidate genes confirmed that trait variation was largely attributable to individual loci. However, for more complex quantitative traits (including heading date, panicle length and seed shattering), we found multiple QTL, with little evidence of shared genetic bases between the S and B populations or across previous studies of weedy rice. Candidate gene sequencing revealed causal genetic bases for 8 of 27 total mapped QTL. Together these findings suggest that despite the genetic bottleneck that occurred during rice domestication, there is ample genetic variation in this crop to allow agricultural weed evolution through multiple genetic mechanisms.


Assuntos
Evolução Molecular , Oryza/genética , Plantas Daninhas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Produtos Agrícolas/genética , DNA de Plantas/genética , Ligação Genética , Variação Genética , Genótipo , Endogamia , Fenótipo , Análise de Sequência de DNA , Estados Unidos
8.
Proc Natl Acad Sci U S A ; 111(17): 6159-64, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24753572

RESUMO

The domestication of plants and animals marks one of the most significant transitions in human, and indeed global, history. Traditionally, study of the domestication process was the exclusive domain of archaeologists and agricultural scientists; today it is an increasingly multidisciplinary enterprise that has come to involve the skills of evolutionary biologists and geneticists. Although the application of new information sources and methodologies has dramatically transformed our ability to study and understand domestication, it has also generated increasingly large and complex datasets, the interpretation of which is not straightforward. In particular, challenges of equifinality, evolutionary variance, and emergence of unexpected or counter-intuitive patterns all face researchers attempting to infer past processes directly from patterns in data. We argue that explicit modeling approaches, drawing upon emerging methodologies in statistics and population genetics, provide a powerful means of addressing these limitations. Modeling also offers an approach to analyzing datasets that avoids conclusions steered by implicit biases, and makes possible the formal integration of different data types. Here we outline some of the modeling approaches most relevant to current problems in domestication research, and demonstrate the ways in which simulation modeling is beginning to reshape our understanding of the domestication process.


Assuntos
Animais Domésticos/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Narração , Animais , Humanos , Hibridização Genética , Modelos Biológicos
9.
Proc Natl Acad Sci U S A ; 111(17): 6139-46, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24757054

RESUMO

It is difficult to overstate the cultural and biological impacts that the domestication of plants and animals has had on our species. Fundamental questions regarding where, when, and how many times domestication took place have been of primary interest within a wide range of academic disciplines. Within the last two decades, the advent of new archaeological and genetic techniques has revolutionized our understanding of the pattern and process of domestication and agricultural origins that led to our modern way of life. In the spring of 2011, 25 scholars with a central interest in domestication representing the fields of genetics, archaeobotany, zooarchaeology, geoarchaeology, and archaeology met at the National Evolutionary Synthesis Center to discuss recent domestication research progress and identify challenges for the future. In this introduction to the resulting Special Feature, we present the state of the art in the field by discussing what is known about the spatial and temporal patterns of domestication, and controversies surrounding the speed, intentionality, and evolutionary aspects of the domestication process. We then highlight three key challenges for future research. We conclude by arguing that although recent progress has been impressive, the next decade will yield even more substantial insights not only into how domestication took place, but also when and where it did, and where and why it did not.


Assuntos
Animais Domésticos/genética , Produtos Agrícolas/genética , Animais , Evolução Biológica , Meio Ambiente , Geografia , Análise Espaço-Temporal
10.
PLoS One ; 8(3): e58916, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554957

RESUMO

Demography impacts the observed standing level of genetic diversity present in populations. Distinguishing the relative impacts of demography from selection requires a baseline of expressed gene variation in naturally occurring populations. Six nuclear genes were sequenced to estimate the patterns and levels of genetic diversity in natural Arabidopsis lyrata subsp. petraea populations that differ in demographic histories since the Pleistocene. As expected, northern European populations have genetic signatures of a strong population bottleneck likely due to glaciation during the Pleistocene. Levels of diversity in the northern populations are about half of that in central European populations. Bayesian estimates of historical population size changes indicate that central European populations also have signatures of population size change since the last glacial maxima, suggesting that these populations are not as stable as previously thought. Time since divergence amongst northern European populations is higher than amongst central European populations, suggesting that the northern European populations were established before the Pleistocene and survived glaciation in small separated refugia. Estimates of demography based on expressed genes are complementary to estimates based on microsatellites and transposable elements, elucidating temporal shifts in population dynamics and confirming the importance of marker selection for tests of demography.


Assuntos
Arabidopsis/genética , Genes de Plantas , Variação Genética , Recombinação Genética , Teorema de Bayes , Biodiversidade , Europa (Continente) , Evolução Molecular , Genética Populacional , Geografia , Haplótipos , Densidade Demográfica , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...