Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 20005, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625578

RESUMO

Physical activity (PA) is one of the most efficient ways to prevent obesity and its associated diseases worldwide. In the USA, less than 10% of the adult population were able to meet the PA recommendations when accelerometers were used to assess PA habituation. Accelerometers significantly differ from each other in step recognition and do not reveal raw data. The aim of our study was to compare a novel accelerometer, Sartorio Xelometer, which enables to gather raw data, with existing accelerometers ActiGraph GT3X+ and activPAL in terms of step detection and energy expenditure estimation accuracy. 53 healthy subjects were divided into 2 cohorts (cohort 1 optimization; cohort 2 validation) and wore 3 accelerometers and performed an exercise routine consisting of the following speeds: 1.5, 3, 4.5, 9 and 10.5 km/h (6 km/h for 2nd cohort included). Data from optimization cohort was used to optimize Sartorio step detection algorithm. Actual taken steps were recorded with a video camera and energy expenditure (EE) was measured. To observe the similarity between video and accelerometer step counts, paired samples t test and intraclass correlation were used separately for step counts in different speeds and for total counts as well as EE estimations. In speeds of 1.5, 3, 4.5, 6, 9 and 10.5 km/h mean absolute percentage error (MAPE) % were 8.1, 3.5, 4.3, 4.2, 3.1 and 7.8 for the Xelometer, respectively (after optimization). For ActiGraph GT3X+ the MAPE-% were 96.93 (87.4), 34.69 (23.1), 2.13 (2.3), 1.96 (2.6) and 2.99 (3.8), respectively and for activPAL 6.55 (5.6), 1.59 (0.6), 0.81 (1.1), 10.60 (10.3) and 15.76 (13.8), respectively. Significant intraclass correlations were observed with Xelometer estimates and actual steps in all speeds. Xelometer estimated the EE with a MAPE-% of 30.3, activPAL and ActiGraph GT3X+ with MAPE percentages of 20.5 and 24.3, respectively. The Xelometer is a valid device for assessing step counts at different gait speeds. MAPE is different at different speeds, which is of importance when assessing the PA in obese subjects and elderly. EE estimates of all three devices were found to be inaccurate when compared with indirect calorimetry.


Assuntos
Acelerometria/instrumentação , Metabolismo Energético , Calorimetria Indireta , Ambiente Controlado , Exercício Físico , Humanos , Atividade Motora
2.
J Biomech ; 40(13): 2967-74, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17399725

RESUMO

High acceleration levels (>4g) seen during impact exercises have been shown to increase bone mineral density (BMD) in premenopausal women. The aim of this study was to examine how the other acceleration signal characteristics, i.e. the slope, area and energy of the signal are related to changes in bone density, using long-term quantification of physical activity. Daily physical activity was continuously assessed with a waist-worn accelerometer-based body movement monitor in 64 premenopausal women participating in a 12-month population-based exercise trial. The daily number of exercise-induced impacts at different slope, area and energy levels of the acceleration signal was analyzed. Physical activity inducing slopes 1000 m/s(3), acceleration peak areas 2m/s or signal energies 75 m(2)/s(3) was associated with BMD change in the hip (p<0.05). Impacts with the smallest slopes (<1000 m/s(3)) were positively associated with changes in calcaneal speed of ultrasound, while impacts with slopes 1500 m/s(3) or areas 4m/s were positively correlated with broadband ultrasound attenuation changes (p<0.05). We conclude that the acceleration slope of exercise-induced impacts is an important determinant of bone density. The slope threshold for improving BMD at the hip is 1000 m/s(3), which can be achieved during normal exercise including fast movements such as running and jumping.


Assuntos
Densidade Óssea/fisiologia , Exercício Físico/fisiologia , Adulto , Feminino , Humanos
3.
Bone ; 40(3): 604-11, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17140871

RESUMO

INTRODUCTION: Physical activity is known to enhance the mechanical competence of bone. However, information about the optimal type of exercise is limited. The aim of this study was to evaluate the contribution of jumping exercise to changes in bone geometry. METHODS: We carried out a 12-month population-based trial with 120 women (aged 35-40 years), randomly assigned to an exercise group or to a control group. The exercise regimen consisted of supervised, progressive high-impact exercises three times per week and an additional home program. The intensity of impact loading was assessed as the magnitude of acceleration peaks using an accelerometer-based body movement monitor. The activity was analyzed as the daily number of impacts within five acceleration ranges (0.3-1.0g, 1.1-2.4g, 2.5-3.8g, 3.9-5.3g and 5.4-9.2g; g=acceleration of gravity, 9.81 m/s(2)). Bone geometry was assessed with spiral quantitative computed tomography (QCT) scanner at mid-femur, proximal tibia and distal tibia. RESULTS: Thirty-nine women (65%) in the exercise group and 41 women (68%) in the control group completed the study. QCT and physical activity data were available from 65 subjects. The exercise group showed a significant 0.2% (p=0.033) higher gain in bone circumference compared to the control group at mid-femur. Subgroup analyses revealed geometric changes indicating up to a 2.5% increment in bone strength in favor of the most active exercisers (>66 exercise sessions during the 12 months) compared to the least active exercisers (<19 sessions). In pooled groups, the changes in cortical attenuation and cross-sectional moment of inertia correlated positively (p<0.05-p<0.01) with the number of impacts exceeding 1.1g, while changes in cortical thickness (p<0.05) and bone circumference (p<0.05-p<0.01) were positively associated with impacts 3.9g, or more. The number and intensity of impacts during the 12 months were the most significant predictors of changes in bone geometry explaining up to 36% of changes. CONCLUSIONS: Bone geometry adapts to impact exercise and the adaptation is most marked at the mid-femur. The changes in bone geometry are associated with the number and intensity of daily impacts while the redistribution of bone mineral appears to be the main mechanism in the skeletal adaptation to varying intensities of exercise.


Assuntos
Exercício Físico/fisiologia , Fêmur/anatomia & histologia , Estresse Mecânico , Tíbia/anatomia & histologia , Adulto , Feminino , Fêmur/fisiologia , Humanos , Tíbia/fisiologia , Tomografia Computadorizada Espiral
4.
Clin Biomech (Bristol, Avon) ; 21(1): 1-7, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16298464

RESUMO

BACKGROUND: The incidence of osteoporotic fractures is increasing and has become one of the major health problems in developed countries. Physical exercise has been found to be effective in the prevention of osteoporosis. However, the optimal amount of exercise is not known. The aim of this study was to examine the association between the intensity of physical activity and bone mineral density at the proximal femur, using long-term quantification of daily physical activity. METHODS: The study subjects were 64 women (age 35-40 years), who carried an accelerometer-based body movement recorder for 12 months for individual quantification of their daily physical activity. The average distribution of daily accelerations was defined using 33 acceleration levels. FINDINGS: A significant relationship between physical activity data and proximal femur bone mineral density was found. Physical activity that induced acceleration levels exceeding 3.6g correlated positively with the bone mineral density change at the proximal femur, the association being strongest at the femoral neck at 5.7 g (r = 0.416, P = 0.001). INTERPRETATION: The association between physical activity and changes in proximal femur bone mineral density was dependent on the acceleration level of exercise. The quantity and quality of exercise can be monitored with the accelerometer-based physical activity monitor, and the method might be used for optimizing exercise for prevention of osteoporosis.


Assuntos
Aceleração , Atividades Cotidianas , Densidade Óssea/fisiologia , Fêmur/fisiologia , Atividade Motora/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Feminino , Fêmur/diagnóstico por imagem , Humanos , Monitorização Ambulatorial , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...