Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Mol Med ; 12(7): 860-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22697346

RESUMO

Protein homeostasis (proteostasis) generates and maintains individual proteins in their folded and functional-competent states. The components of the cellular proteostasis machinery also dictate the functional lifetime of a protein by constantly regulating its conformation, concentration and subcellular location. The autosomal recessive disease cystic fibrosis (CF) is caused by a proteostasis-defect in CF transmembrane conductance regulator (CFTR). The most common CF mutation leading to this proteostasis-defect is the deletion of a phenylalanine residue at position 508 (ΔF508) of the CFTR protein. This ΔF508-CFTR protein is prone to aberrant folding, increased ER-associated degradation, atypical intracellular trafficking and reduced stability at the apical membrane. This ΔF508-CF proteostasis-defect leads to an obstructive lung disease characterized by impaired ion transport in airway epithelial cells, mucus buildup in air space and chronic airway inflammation. We assess here whether correcting the underlying defect in ΔF508-CFTR protein processing using therapeutic proteostasis regulators can treat chronic CF lung disease. As a proof of concept, recent studies support that the selective modulation of mutant-CFTR proteostasis may offer promising therapies to reverse chronic CF lung disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Pneumopatias/genética , Humanos , Mutação
2.
Curr Mol Med ; 12(7): 807-14, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22697347

RESUMO

Proteostasis is a critical cellular homeostasis mechanism that regulates the concentration of all cellular proteins by controlling protein- synthesis, processing and degradation. This includes protein-conformation, binding interactions and sub-cellular localization. Environmental, genetic or age-related pathogenetic factors can modulate the proteostasis (proteostasis-imbalance) through transcriptional, translational and post-translational changes that trigger the development of several complex diseases. Although these factors are known to be involved in pathogenesis of chronic obstructive pulmonary disease (COPD), the role of proteostasis mechanisms in COPD is scarcely investigated. As a proof of concept, our recent data reveals a novel role of proteostasis-imbalance in COPD pathogenesis. Briefly, cigarette- and biomass- smoke induced proteostasis-imbalance may aggravate chronic inflammatory-oxidative stress and/or protease-anti-protease imbalance resulting in pathogenesis of severe emphysema. In contrast, pathogenesis of other chronic lung diseases like ΔF508-cystic fibrosis (CF), α1-anti-trypsin-deficiency (α-1 ATD) and pulmonary fibrosis (PF) is regulated by other proteostatic mechanisms, involving the degradation of misfolded proteins (ΔF508-CFTR/α1-AT- Z variant) or regulating the concentration of signaling proteins (such as TGF-ß1) by the ubiquitin-proteasome system (UPS). The therapeutic strategies to correct proteostasis-imbalance in misfolded protein disorders such as ΔF508-CF have been relatively well studied and involve strategies that rescue functional CFTR protein to treat the underlying cause of the disease. While in the case of COPD-emphysema and/or PF, identification of novel proteostasis-regulators that can control inflammatory-oxidative stress and/or protease-anti-protease balance is warranted.


Assuntos
Homeostase/fisiologia , Proteínas/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema/genética , Enfisema/metabolismo , Homeostase/genética , Humanos , Proteínas/genética , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/efeitos adversos
3.
Curr Mol Med ; 10(1): 82-94, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20205681

RESUMO

Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) that regulates epithelial surface fluid secretion in respiratory and gastrointestinal tracts. The deletion of phenylalanine at position 508 (DeltaF508) in CFTR is the most common mutation that results in a temperature sensitive folding defect, retention of the protein in the endoplasmic reticulum (ER), and subsequent degradation by the proteasome. ER associated degradation (ERAD) is a major quality control pathway of the cell. The majority (99%) of the protein folding, DeltaF508-, mutant of CFTR is known to be degraded by this pathway to cause CF. Recent studies have revealed that inhibition of DeltaF508-CFTR ubiquitination and proteasomal degradation can increase its cell surface expression and may provide an approach to treat CF. The finely tuned balance of ER membrane interactions determine the cytosolic fate of newly synthesized CFTR. These ER membrane interactions induce ubiquitination and proteasomal targeting of DeltaF508- over wild type- CFTR. We discuss here challenges and therapeutic strategies targeting protein processing of DeltaF508-CFTR with the goal of rescuing functional DeltaF508-CFTR to the cell surface. It is evident from recent studies that CFTR plays a critical role in inflammatory response in addition to its well-described ion transport function. Previous studies in CF have focused only on improving chloride efflux as a marker for promising treatment. We propose that methods quantifying the therapeutic efficacy and recovery from CF should not include only changes in chloride efflux, but also recovery of the chronic inflammatory signaling, as evidenced by positive changes in inflammatory markers (in vitro and ex vivo), lung function (pulmonary function tests, PFT), and chronic lung disease (state of the art molecular imaging, in vivo). This will provide novel therapeutics with greater opportunities of potentially attenuating the progression of the chronic CF lung disease.


Assuntos
Fibrose Cística/genética , Fibrose Cística/metabolismo , Inflamação/etiologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Animais , Fibrose Cística/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Inflamação/patologia
4.
Indian J Exp Biol ; 39(4): 371-7, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11491584

RESUMO

Twenty three pyrimidine auxotrophs of Sinorhizobium meliloti Rmd201 were generated by random mutagenesis with transposon Tn5. On the basis of biochemical characters these auxotrophic mutants were classified into car, pyrC and pyrE/pyrF categories. All auxotrophs induced white nodules which were ineffective in nitrogen fixation. Light and electron microscopic studies revealed that the nodules induced by pyrC mutants were more developed than the nodules of car mutants. Similarly the nodules induced by pyrE/pyrF mutants had more advanced structural features than the nodules of pyrC mutants. The nodule development in case of pyrE/pyrF mutants was not to the extent observed in the parental strain. These results indicated that some of the intermediates and/or enzymes of pyrimidine biosynthetic pathway of S. meliloti play a key role in bacteroidal transformation and nodule development.


Assuntos
Medicago sativa/microbiologia , Sinorhizobium meliloti/fisiologia , Medicago sativa/metabolismo , Medicago sativa/ultraestrutura , Microscopia Eletrônica , Mutagênese , Fixação de Nitrogênio , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/ultraestrutura , Pirimidinas/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/ultraestrutura , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...