Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 262(Pt 2): 129979, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331065

RESUMO

In this study, 1-bromohexyl-1methylpiperidinium bromide (Br-6-MPRD) ionic liquid grafted quaternized chitosan (QCS) and polyvinyl alcohol (PVA) blends were composited with glycidyl trimethyl ammonium chloride (GTMAC) quaternized silica (QSiO2) at different dosages. Glutaraldehyde (GA) crosslinked the membranes and then processed into hydroxide form with an aqueous potassium hydroxide solution. The resultant IL-QCS/PVA/QSiO2 membranes exhibit significantly improved ionic conductivity, moderate water absorption and swelling ratio compared with the pristine IL-QCS/PVA anion exchange membrane (AEM). Among them, the hydroxide ion conductivity and power density of IL-QCS/PVA/QSiO2-7 membrane can reach up to 78 mS cm-1 at 80 °C and 115 mW cm-2 at 60 °C respectively. In addition, IL-QCS/PVA/QSiO2 membranes have excellent thermal, mechanical, and chemical stabilities, which can meet the application requirements of AEM for fuel cells.


Assuntos
Compostos de Amônio , Quitosana , Hidróxidos , Líquidos Iônicos , Metacrilatos , Álcool de Polivinil , Polímeros , Ânions , Eletrólitos , Dióxido de Silício
2.
Membranes (Basel) ; 12(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36557172

RESUMO

Considering the critical energy challenges and the generation of zero-emission anion exchange membrane (AEM) sources, chitosan-based anion exchange membranes have garnered considerable interest in fuel cell applications owing to their various advantages, including their eco-friendly nature, flexibility for structural modification, and improved mechanical, thermal, and chemical stability. The present mini-review highlights the advancements of chitosan-based biodegradable anion exchange membranes for fuel cell applications published between 2015 and 2022. Key points from the rigorous literature evaluation are: grafting with various counterions in addition to crosslinking contributed good conductivity and chemical as well as mechanical stability to the membranes; use of the interpenetrating network as well as layered structures, blending, and modified nanomaterials facilitated a significant reduction in membrane swelling and long-term alkaline stability. The study gives insightful guidance to the industry about replacing Nafion with a low-cost, environmentally friendly membrane source. It is suggested that more attention be given to exploring chitosan-based anion exchange membranes in consideration of effective strategies that focus on durability, as well as optimization of the operational conditions of fuel cells for large-scale applications.

3.
ACS Omega ; 7(51): 47784-47795, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591163

RESUMO

In this work, electrospun PBI separators with a highly porous structure and nanofiber diameter of about 90-150 nm are prepared using a multi-nozzle under controlled conditions for lithium metal batteries. Cross-linking with α, α-dibromo-p-xylene and surface treatment using 4-(chloromethyl) benzoic acid successfully improve the electrochemical as well as mechanical properties of the separators. The resulting separator is endowed with high thermal stability and excellent wettability (1080 to 1150%) with commercial liquid electrolyte than PE and PP (Celgard 2400) separators. Besides, attractive cycling stability and rate capability in LiFePO4/Li cells are attained with the modified separators. Prominently, CROSSLINK PBI exhibits a stable Coulombic efficiency of more than 99% over 100 charge-discharge cycles at 0.5 C, which is superior to the value of cells using commercial PE and PP (Celgard 2400) separators. The half cells assembled using the CROSSLINK PBI separator can deliver a discharge capacity of 150.3 mAh g-1 at 0.2 C after 50 cycles corresponding to 88.4% of the theoretical value of LiFePO4 (170 mAh g-1). This work offers a worthwhile method to produce thermally stable separators with noteworthy electrochemical performances which opens new possibilities to improve the safe operation of batteries.

4.
ACS Omega ; 6(15): 10168-10179, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34056171

RESUMO

Anion exchange membranes (AEMs) with good alkaline stability and ion conductivity are fabricated by incorporating quaternary ammonium-modified silica into quaternary ammonium-functionalized poly(2,6-dimethyl-1,4-phenylene oxide) (QPPO). Quaternary ammonium with a long alkyl chain is chemically grafted to the silica in situ during synthesis. Glycidyltrimethylammoniumchloride functionalization on silica (QSiO2) is characterized by Fourier transform infrared and transmission electron microscopic techniques. The QPPO/QSiO2 membrane having an ion exchange capacity of 3.21 meq·g-1 exhibits the maximum hydration number (λ = 11.15) and highest hydroxide ion conductivity of 45.08 × 10-2 S cm-1 at 80 °C. In addition to the high ion conductivity, AEMs also exhibit good alkaline stability, and the conductivity retention of the QPPO/QSiO2-3 membrane after 1200 h of exposure in 1 M potassium hydroxide at room temperature is about 91% ascribed to the steric hindrance offered by the grafted long glycidyl trimethylammonium chain in QSiO2. The application of the QPPO/QSiO2-3 membrane to an alkaline fuel cell can yield a peak power density of 142 mW cm-2 at a current density of 323 mA cm-2 and 0.44 V, which is higher than those of commercially available FAA-3-50 Fumatech AEM (OCV: 0.91 V; maximum power density: 114 mW cm-2 at current density: 266 mA cm-2 and 0.43 V). These membranes provide valuable insights on future directions for advanced AEM development for fuel cells.

5.
Carbohydr Polym ; 179: 152-163, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29111038

RESUMO

A series of novel ionic cross-linked chitosan (CS) based hybrid nanocomposites were prepared by using polyaniline/nano silica (PAni/SiO2) as inorganic filler and sulfuric acid as an ionic cross-linking agent. The CS-PAni/SiO2 nanocomposites show enhanced mechanical properties and improved oxidative stabilities. These nanocomposites can be effectively used as environmental friendly proton exchange membranes. Incorporation of PAni/SiO2 into CS matrix enhances water uptake and facilitates the phase separation which enables the formation of hydrophilic domains and improves the proton transport. Moreover, the doped polyaniline also provides some additional pathways for proton conduction. The membrane containing 3wt% loading of PAni/SiO2 in chitosan (CS-PAni/SiO2-3) exhibits high proton conductivity at 80°C (8.39×10-3Scm-1) in fully hydrated state due to its excellent water retention properties. Moreover, methanol permeability of the ionic cross-linked CS-PAni/SiO2 nanocomposite membranes significantly reduces with the addition of PAni/SiO2 nano particles. The CS-PAni/SiO2-3 composite membrane displays the best overall performance as a polymer electrolyte membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...