Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 16(7): 1275-1282, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29223136

RESUMO

Effective weed control can protect yields of cassava (Manihot esculenta) storage roots. Farmers could benefit from using herbicide with a tolerant cultivar. We applied traditional transgenesis and gene editing to generate robust glyphosate tolerance in cassava. By comparing promoters regulating expression of transformed 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) genes with various paired amino acid substitutions, we found that strong constitutive expression is required to achieve glyphosate tolerance during in vitro selection and in whole cassava plants. Using strategies that exploit homologous recombination (HR) and nonhomologous end-joining (NHEJ) DNA repair pathways, we precisely introduced the best-performing allele into the cassava genome, simultaneously creating a promoter swap and dual amino acid substitutions at the endogenous EPSPS locus. Primary EPSPS-edited plants were phenotypically normal, tolerant to high doses of glyphosate, with some free of detectable T-DNA integrations. Our methods demonstrate an editing strategy for creating glyphosate tolerance in crop plants and demonstrate the potential of gene editing for further improvement of cassava.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Manihot/genética , Alelos , Genes de Plantas/genética , Engenharia Genética , Loci Gênicos/genética , Glicina/farmacologia , Manihot/efeitos dos fármacos , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Glifosato
2.
PLoS Genet ; 13(9): e1007003, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28910288

RESUMO

Cotton bacterial blight (CBB), an important disease of (Gossypium hirsutum) in the early 20th century, had been controlled by resistant germplasm for over half a century. Recently, CBB re-emerged as an agronomic problem in the United States. Here, we report analysis of cotton variety planting statistics that indicate a steady increase in the percentage of susceptible cotton varieties grown each year since 2009. Phylogenetic analysis revealed that strains from the current outbreak cluster with race 18 Xanthomonas citri pv. malvacearum (Xcm) strains. Illumina based draft genomes were generated for thirteen Xcm isolates and analyzed along with 4 previously published Xcm genomes. These genomes encode 24 conserved and nine variable type three effectors. Strains in the race 18 clade contain 3 to 5 more effectors than other Xcm strains. SMRT sequencing of two geographically and temporally diverse strains of Xcm yielded circular chromosomes and accompanying plasmids. These genomes encode eight and thirteen distinct transcription activator-like effector genes. RNA-sequencing revealed 52 genes induced within two cotton cultivars by both tested Xcm strains. This gene list includes a homeologous pair of genes, with homology to the known susceptibility gene, MLO. In contrast, the two strains of Xcm induce different clade III SWEET sugar transporters. Subsequent genome wide analysis revealed patterns in the overall expression of homeologous gene pairs in cotton after inoculation by Xcm. These data reveal important insights into the Xcm-G. hirsutum disease complex and strategies for future development of resistant cultivars.


Assuntos
Genoma Bacteriano/genética , Gossypium/genética , Doenças das Plantas/genética , Xanthomonas/genética , Resistência à Doença/genética , Genômica , Gossypium/microbiologia , Anotação de Sequência Molecular , Filogenia , Doenças das Plantas/microbiologia , Virulência , Xanthomonas/patogenicidade
3.
New Phytol ; 213(4): 1632-1641, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28116755

RESUMO

Cassava (Manihot esculenta) feeds c. 800 million people world-wide. Although this crop displays high productivity under drought and poor soil conditions, it is susceptible to disease, postharvest deterioration and the roots contain low nutritional content. Here, we provide molecular identities for 11 cassava tissue/organ types through RNA-sequencing and develop an open access, web-based interface for further interrogation of the data. Through this dataset, we consider the physiology of cassava. Specifically, we focus on identification of the transcriptional signatures that define the massive, underground storage roots used as a food source and the favored target tissue for transgene integration and genome editing, friable embryogenic callus (FEC). Further, we identify promoters able to drive strong expression in multiple tissue/organs. The information gained from this study is of value for both conventional and biotechnological improvement programs.


Assuntos
Produtos Agrícolas/genética , Abastecimento de Alimentos , Perfilação da Expressão Gênica , Manihot/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...