Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pept Sci ; 30(4): e3554, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009400

RESUMO

The cysteine-free acyclic peptides present in marine cone snail venom have been much less investigated than their disulfide bonded counterparts. Precursor protein sequences derived from transcriptomic data, together with mass spectrometric fragmentation patterns for peptides present in venom duct tissue extracts, permit the identification of mature peptides. Twelve distinct gene superfamiles have been identified with precursor lengths between 64 and 158 residues. In the case of Conus monile, three distinct mature peptides have been identified, arising from two distinct protein precursors. Mature acyclic peptides are often post-translationally modified, with C-terminus amidation, a feature characteristic of neuropeptides. In the present study, 20 acyclic peptides from Conus monile and Conus betulinus were identified. The common modifications of C-terminus amidation, gamma carboxylation of glutamic acid (E to ϒ), N-terminus conversion of Gln (Q) to a pyroglutamyl residue (Z), and hydroxylation of Pro (P) to Hyp (O) are observed in one or more peptides identified in this study. Proteolytic trimming of sequences by cleavage at the C-terminus of Asn (N) residues is established. The presence of an asparagine endopeptidase is strengthened by the identification of legumain-like sequences in the transcriptome assemblies from diverse Conus species. Such sequences may be expected to have a cleavage specificity at Asn-Xxx peptide bonds.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Venenos de Moluscos/química , Venenos de Moluscos/genética , Venenos de Moluscos/metabolismo , Conotoxinas/química , Peptídeos/química , Caramujo Conus/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo
2.
Biochemistry ; 62(21): 3061-3075, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37862039

RESUMO

Two novel redox conopeptides with proline residues outside and within the active site disulfide loop were derived from the venom duct transcriptome of the marine cone snails Conus frigidus and Conus amadis. Mature peptides with possible post-translational modification of 4-trans-hydroxylation of proline, namely, Fr874, Fr890[P1O], Fr890[P2O], Fr906, Am1038, and Am1054, have been chemically synthesized and characterized using mass spectrometry. The estimated reduction potential of cysteine disulfides of synthetic peptides varied from -298 to -328 mV, similar to the active site cysteine disulfide motifs of the redox family of proteins. Fr906/Am1054 exhibited pronounced catalytic activity and assisted in improving the yields of natively folded globular form α-conotoxin ImI. Three-dimensional (3D) structures of the redox conopeptides were optimized using computational methods and verified by 2D-ROESY NMR spectroscopy: C. frigidus peptides adopt an N-terminal helical fold and C. amadis peptides adopt distinct structures based on the Phe4-Pro/Hyp5 peptide bond configuration. The shift in the cis-trans configuration of the Phe4-Pro/Hyp5 peptide bond of Am1038/Am1054 was observed between reduced free thiol and oxidized disulfide forms of the optimized peptides. The report confirms the position-specific effect of hydroxyproline on the oxidative folding of conotoxins and sequence diversity of redox conopeptides in the venom duct of cone snails.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Transcriptoma , Peçonhas , Cisteína/metabolismo , Conotoxinas/química , Caramujo Conus/genética , Peptídeos/química , Prolina/metabolismo , Dissulfetos/metabolismo , Cistina/metabolismo , Oxirredução , Estresse Oxidativo
3.
Peptides ; 156: 170845, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35902005

RESUMO

Distinct differences have been observed between L-tryptophan and D-tryptophan containing contryphan-Ar1131 in oxidative folding, trypsin binding, and photostabilization activity on avobenzone. [W5] contryphan-Ar1131 and [w5] contryphan-Ar1131 were chemically synthesized and characterized using RP-HPLC and mass spectrometry. Structural differences due to the change of configuration of tryptophan were evident from the optimized structures of contryphan-Ar1131 using density functional theory (DFT). The comparison of early events of oxidative folding has revealed the role of D-tryptophan in accelerating the formation of a disulfide bond. The optimized structures of the reduced form of peptides revealed the occurrence of aromatic-aromatic and aromatic-proline interactions in [w5] contryphan-Ar1131 which may be critical in aiding the oxidative folding reaction. The presence of the Lys6-Pro7 peptide bond indicates that contryphan-Ar1131 is resistant but may bind to trypsin allowing to assign the binding affinity of peptides to the protein surface. Competitive binding studies and molecular docking along with molecular dynamic (MD) simulations have revealed that [w5] contryphan-Ar1131 has more affinity for the active site of trypsin. Given tryptophan is a photostabilizer of FDA-approved chemical UV-A filter avobenzone, the report has compared the photostabilization activity of [W5]/ [w5] contryphan-Ar1131 on avobenzone under natural sunlight. [w5] contryphan-Ar1131 has better photostabilization activity than that of [W5] contryphan-Ar1131 and also individual D-tryptophan and L-tryptophan amino acids. These biochemical studies have highlighted the significance of D-tryptophan in contryphan-Ar1131 and its photostabilization activity on avobenzone may find applications in cosmetics.


Assuntos
Caramujo Conus , Animais , Caramujo Conus/metabolismo , Dissulfetos , Simulação de Acoplamento Molecular , Venenos de Moluscos/química , Venenos de Moluscos/metabolismo , Estresse Oxidativo , Peptídeos/química , Peptídeos Cíclicos , Prolina , Propiofenonas , Tripsina , Triptofano/química
4.
Biochemistry ; 60(16): 1299-1311, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33829763

RESUMO

The tetrapeptides Li504 and Li520, differing in the modification of the 4-trans-hydroxylation of proline, are novel conopeptides derived from the venom duct transcriptome of the marine cone snail Conus lividus. These predicted mature peptides are homologous to the active site motif of oxidoreductases that catalyze the oxidation, reduction, and rearrangement of disulfide bonds in peptides and proteins. The estimated reduction potential of the disulfide of Li504 and Li520 is within the range of disulfide reduction potentials of oxidoreductases, indicating that they may catalyze the oxidative folding of conotoxins. Conformational features of Li504 and Li520 include the trans configuration of the Cys1-Pro2/Hyp2 peptide bond with a type 1 turn that is similar to the active site motif of glutaredoxin that regulates the oxidation of cysteine thiols to disulfides. Li504- and Li520-assisted oxidative folding of α-conotoxin ImI confirms that Li520 improves the yield of the natively folded peptide by concomitantly decreasing the yield of the non-native disulfide isomer and thus acts as a miniature disulfide isomerase. The geometry of the Cys1-Hyp2 peptide bond of Li520 shifts between the trans and cis configurations in the disulfide form and thiol/thiolate form, which regulates the deprotonation of the N-terminal cysteine residue. Hydrogen bonding of the hydroxyl group of 4-trans-hydroxyproline with the interpeptide chain unit in the mixed disulfide form may play a vital role in shifting the geometry of the Cys1-Hyp2 peptide bond from cis to trans configuration. The Li520 conopeptide together with similar peptides derived from other species may constitute a new family of "redox-active" conopeptides that are integral components of the oxidative folding machinery of conotoxins.


Assuntos
Conotoxinas/química , Caramujo Conus/genética , Oligopeptídeos/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Transcriptoma , Peçonhas/genética , Animais , Oligopeptídeos/química , Oxirredução , Estereoisomerismo
5.
J Proteome Res ; 17(8): 2695-2703, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29947227

RESUMO

The post-translational modification of N-terminal glutamine (Q) to a pyroglutamyl (Z) residue is observed in the conotoxins produced by marine cone snails. This conversion requires the action of the enzyme glutaminyl cyclase (QC). Four complete QC sequences from the species C. araneosus, C. frigidus, C. litteratus, and C. monile and two partial sequences from C. amadis and C. miles have been obtained by analysis of transcriptomic data. Comparisons with mammalian enzyme sequences establish a high level of identity and complete conservation of functional active site residues, including a cluster of hydrogen-bonded acidic side chains. Mass spectrometric analysis of crude venom samples coupled to conotoxin precursor protein sequences obtained from transcriptomic data establishes the presence of pyroglutamyl conotoxins in the venom of C. frigidus and C. amadis. The C. frigidus peptide belongs to the M superfamily, with cysteine framework III, whereas the C. amadis peptide belongs to the divergent superfamily with cysteine framework VI/VII. Additionally, gamma carboxylation of glutamic acid and hydroxylation of proline are observed in the C. frigidus peptide. Mass spectral data are available via ProteomeXchange with identifier PXD009006.


Assuntos
Aminoaciltransferases/química , Conotoxinas/química , Caramujo Conus/química , Ácido Pirrolidonocarboxílico/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases/metabolismo , Animais , Caramujo Conus/enzimologia , Perfilação da Expressão Gênica , Espectrometria de Massas , Processamento de Proteína Pós-Traducional
6.
J Proteome Res ; 16(2): 763-772, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28152596

RESUMO

The occurrence of contryphans, a class of single-disulfide-bond-containing peptides, is demonstrated by the analysis of the venom of nine species of cone snails. Ten full gene sequences and two partial gene sequences coding for contryphan precursor proteins have been identified by next-generation sequencing and compared with available sequences. The occurrence of mature peptides in isolated venom has been demonstrated by LC-ESI-MS/MS analysis. De novo sequencing of reduced, alkylated contryphans from C. frigidus and C. araneosus provides evidence of sequence variation and post-translational modification, notably gamma carboxylation of glutamic acid. The characterization of Fr965 (C. frigidus) provides a rare example of a sequence lacking Pro at position 5 in the disulfide loop. The widespread occurrence of contryphan genes and mature peptides in the venom of diverse cone snails is suggestive of their potential biological significance.


Assuntos
Conotoxinas/genética , Peptídeos Cíclicos/genética , Transcriptoma/genética , Peçonhas/genética , Sequência de Aminoácidos/genética , Animais , Conotoxinas/química , Caramujo Conus/química , Caramujo Conus/genética , Espectrometria de Massas , Peptídeos/química , Peptídeos/genética , Processamento de Proteína Pós-Traducional , Peçonhas/química
7.
Bioinformation ; 6(8): 291-2, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21769187

RESUMO

Sequence stretches in proteins that do not fold into a form are referred as disordered regions. Databases like Disport describe disordered regions in proteins and web servers like PrDOS and DisEMBL, facilitate the prediction of disordered regions. These studies are often based on residue level features. Here, we describe proteins with disordered regions using carbon content and distributions. The distribution pattern for proteins with disordered regions is different from those that do not show disordered regions.

8.
Bioinformation ; 5(10): 455-7, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21423892

RESUMO

There are lots of works gone into proteins to understand the nature of proteins. Hydrophobic interaction is the dominant force that drives the proteins to carry out the biochemical reactions in all living system. Carbon is the only element that contributes towards this hydrophobic interaction. Studies find that globular proteins prefer to have 31.45% of carbon for its stability. Taking this as standard, a carbon analysis program has been developed to study the carbon distribution profile of protein sequences. This carbon analysis program has been made available online. This can be accessed at www.rajasekaran.net.in/tools/carbana.html. This new program is hoped to help in identification and development of active sites, study of protein stability, evolutionary understating of proteins, gene identification, ligand binding site identification, and to solve the long-standing problem of protein-protein and protein-DNA interactions.

9.
Bioinformation ; 3(9): 409-12, 2009 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-19759817

RESUMO

Large Hydrophobic Residues (LHR) such as phenylalanine, isoleucine, leucine, methionine and valine play an important role in protein structure and activity. We describe the role of LHR in complete set of protein sequences in 15 different species. That is the distribution of LHR in different proteins of different species is reported. It is observed that the proteins prefer to have 27% of large hydrophobic residues in total and all along the sequence. It is also observed that proteins accumulate more LHR in its active sites. A window analysis on these protein sequences shows that the 27% of LHR is more frequent at window length of 45 amino acids. The influenza virus and P. falciparum show a random distribution of LHR in its proteins compared to other model organisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...