Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611778

RESUMO

Polymer research is currently focused on sustainable and degradable polymers which are cheap, easy to synthesize, and environmentally friendly. Silicon-based polymers are thermally stable and can be utilized in various applications, such as columns and coatings. Poly(silyl ether)s (PSEs) are an interesting class of silicon-based polymers that are easily hydrolyzed in either acidic or basic conditions due to the presence of the silyl ether Si-O-C bond. Synthetically, these polymers can be formed in several different ways, and the most effective and environmentally friendly synthesis is dehydrogenative cross coupling, where the byproduct is H2 gas. These polymers have a lot of promise in the polymeric materials field due to their sustainability, thermal stability, hydrolytic degradability, and ease of synthesis, with nontoxic byproducts. In this review, we will summarize the synthetic approaches for the PSEs in the recent literature, followed by the properties and applications of these materials. A conclusion and perspective will be provided at the end.

2.
ChemSusChem ; 11(17): 2881-2888, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-29958332

RESUMO

Several degradable poly(silyl ether)s (PSEs) have been synthesized by dehydrogenative cross-coupling between bio-based 1,4:3,6-dianhydrohexitols (isosorbide and isomannide) and commercially available hydrosilanes. An air-stable manganese salen nitrido complex [MnV N(salen-3,5-tBu2 )] was employed as the catalyst. High-molecular-weight polymer was obtained from isosorbide and diphenylsilane (Mn up to 17000 g mol-1 ). Thermal analysis showed that these PSEs possessed high thermal stability with thermal decomposition temperatures (T-5 % ) of 347-446 °C and glass transition temperatures of 42-120 °C. Structure-property analysis suggested that steric bulk and molecular weight have a significant influence to determine the thermal properties of synthesized polymers. Importantly, these polymers were degraded effectively to small molecules under acidic and basic hydrolysis conditions.

3.
ACS Omega ; 2(2): 582-591, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31457456

RESUMO

Poly(silylether)s are interesting materials because of their degradation property under hydrolytic conditions and have been prepared via hydrosilylation polymerization from dicarbonyl and hydrosilanes, and via dehydrogenative cross-coupling of diols and hydrosilanes under catalytic conditions. Here, we present a manganese-salen compound based on an inexpensive and nontoxic metal that could effectively catalyze both polymerization reactions with hydrosilane. A series of poly(silylether)s containing various aliphatic and aromatic backbones have been synthesized from diol and dicarbonyl substrates. Moderate to high yields of polymers with number-average molecular weights up to 15 kg/mol are obtained. Because of the dual activity of the manganese catalyst, unsymmetrical substrates with mixed functional groups, such as p-hydroxybenzaldehyde, p-hydroxy benzylalcohol, and 3-(4-hydroxyphenyl)-1-propanol, have been employed to afford poly(silylether)s with multiple silicon connectivity in the main chain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...