Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37937644

RESUMO

The mechanisms underlying susceptibility to recurrent herpes simplex virus type 2 (HSV-2) meningitis remain incompletely understood. In a patient experiencing multiple episodes of HSV-2 meningitis, we identified a monoallelic variant in the IKBKE gene, which encodes the IKKε kinase involved in induction of antiviral IFN genes. Patient cells displayed impaired induction of IFN-ß1 (IFNB1) expression upon infection with HSV-2 or stimulation with double-stranded DNA (dsDNA) and failed to induce phosphorylation of STING, an activation marker of the DNA-sensing cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway. The patient allele encoded a truncated IKKε protein with loss of kinase activity and also capable of exerting dominant-negative activity. In stem cell-derived microglia, HSV-2-induced expression of IFNB1 was dependent on cGAS, TANK binding kinase 1 (TBK1), and IKBKE, but not TLR3, and supernatants from HSV-2-treated microglia exerted IKBKE-dependent type I IFN-mediated antiviral activity upon neurons. Reintroducing wild-type IKBKE into patient cells rescued IFNB1 induction following treatment with HSV-2 or dsDNA and restored antiviral activity. Collectively, we identify IKKε to be important for protection against HSV-2 meningitis and suggest a nonredundant role for the cGAS/STING pathway in human antiviral immunity.


Assuntos
Herpesvirus Humano 2 , Quinase I-kappa B , Humanos , DNA/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosforilação , Transdução de Sinais
2.
J Leukoc Biol ; 113(6): 577-587, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36999365

RESUMO

Neutrophils express many surface receptors that sense environmental changes. One such sensor is FFAR2 (free fatty acid receptor 2), a receptor that detects gut microbiota-derived short-chain fatty acids. As such, FFAR2 has been regarded as a molecular link between metabolism and inflammation. Our recent studies on FFAR2, using its endogenous agonist propionate in combination with allosteric modulators, have identified several novel aspects of FFAR2 regulation. A recent study has also identified the ketone body acetoacetate as an endogenous ligand for mouse FFAR2. Whether human FFAR2 also recognizes acetoacetate and how this recognition modulates human neutrophil functions has not been investigated. In this study, we found that acetoacetate can induce a decrease of cAMP and translocation of ß-arrestin in cells overexpressing FFAR2. In addition, we show that similar to propionate, FFAR2-specific allosteric modulators enhance acetoacetate-induced transient rise in cytosolic calcium, production of reactive oxygen species, and cell migration in human neutrophils. In summary, we demonstrate that human neutrophils recognize the ketone body acetoacetate through FFAR2. Thus, our data further highlight the key role of FFAR2 in inflammation and metabolism.


Assuntos
Propionatos , Receptores Acoplados a Proteínas G , Humanos , Camundongos , Animais , Receptores Acoplados a Proteínas G/metabolismo , Propionatos/farmacologia , Neutrófilos/metabolismo , Acetoacetatos/farmacologia , Acetoacetatos/metabolismo , Corpos Cetônicos/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo
3.
J Immunol ; 208(7): 1632-1641, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35321878

RESUMO

Highly pathogenic Staphylococcus aureus strains produce phenol-soluble modulins (PSMs), which are N-formylated peptides. Nanomolar concentrations of PSMα2 are recognized by formyl peptide receptor 2 (FPR2), but unlike the prototypic FPR2 agonist WKYMVM, PSMα2 is a biased signaling agonist. The truncated N-terminal PSMα2 variant, consisting of the five N-terminal residues, is no longer recognized by FPR2, showing that the C-terminal part of PSMα2 confers FPR2 selectivity, whereas the N-terminal part may interact with the FPR1 binding site. In the current study, a combined pharmacological and genetic approach involving primary human neutrophils and engineered FPR knock-in and knockout cells was used to gain molecular insights into FPR1 and FPR2 recognition of formyl peptides as well as the receptor downstream signaling induced by these peptides. In comparison with the full-length PSMα2, we show that the peptide in which the N-terminal part of PSMα2 was replaced by fMet-Ile-Phe-Leu (an FPR1-selective peptide agonist) potently activates both FPRs for production of superoxide anions and ß-arrestin recruitment. A shortened analog of PSMα2 (PSMα21-12), lacking the nine C-terminal residues, activated both FPR1 and FPR2 to produce reactive oxygen species, whereas ß-arrestin recruitment was only mediated through FPR1. However, a single amino acid replacement (Gly-2 to Ile-2) in PSMα21-12 was sufficient to alter FPR2 signaling to include ß-arrestin recruitment, highlighting a key role of Gly-2 in conferring FPR2-biased signaling. In conclusion, we provide structural insights into FPR1 and FPR2 recognition as well as the signaling induced by interaction with formyl peptides derived from PSMα2, originating from S. aureus bacteria.


Assuntos
Receptores de Formil Peptídeo , Staphylococcus aureus , Toxinas Bacterianas , Humanos , Neutrófilos/metabolismo , Peptídeos/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/química , Staphylococcus aureus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...