Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Am J Hum Genet ; 111(7): 1243-1251, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996465

RESUMO

Population history-focused DNA and ancient DNA (aDNA) research in Africa has dramatically increased in the past decade, enabling increasingly fine-scale investigations into the continent's past. However, while international interest in human genomics research in Africa grows, major structural barriers limit the ability of African scholars to lead and engage in such research and impede local communities from partnering with researchers and benefitting from research outcomes. Because conversations about research on African people and their past are often held outside Africa and exclude African voices, an important step for African DNA and aDNA research is moving these conversations to the continent. In May 2023 we held the DNAirobi workshop in Nairobi, Kenya and here we synthesize what emerged most prominently in our discussions. We propose an ideal vision for population history-focused DNA and aDNA research in Africa in ten years' time and acknowledge that to realize this future, we need to chart a path connecting a series of "landmarks" that represent points of consensus in our discussions. These include effective communication across multiple audiences, reframed relationships and capacity building, and action toward structural changes that support science and beyond. We concluded there is no single path to creating an equitable and self-sustaining research ecosystem, but rather many possible routes linking these landmarks. Here we share our diverse perspectives as geneticists, anthropologists, archaeologists, museum curators, and educators to articulate challenges and opportunities for African DNA and aDNA research and share an initial map toward a more inclusive and equitable future.


Assuntos
DNA Antigo , Genética Populacional , Humanos , DNA Antigo/análise , África , Genômica , População Negra/genética
2.
Am J Biol Anthropol ; 180(1): 144-161, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790637

RESUMO

OBJECTIVES: This study aims to characterize the genetic histories of ancient hunter-gatherer groups in Fuego-Patagonia (Chile) with distinct Marine, Terrestrial, and Mixed Economy subsistence strategies. Mitochondrial (mtDNA) and Y-chromosome data were generated to test three hypotheses. H0: All individuals were drawn from the same panmictic population; H1: Terrestrial groups first populated the region and gave rise to highly specialized Marine groups by ~7,500 cal BP; or H2: Marine and Terrestrial groups represent distinct ancestral lineages who migrated independently into the region. METHODS: Ancient DNA was extracted from the teeth of 50 Fuegian-Patagonian individuals dating from 6,895 cal BP to after European arrival, and analyzed alongside other individuals from previous studies. Individuals were assigned to Marine, Terrestrial, and Mixed Economy groups based on archeological context and stable isotope diet inferences, and mtDNA (HVR1/2) and Y-chromosome variation was analyzed. RESULTS: Endogenous aDNA was obtained from 49/50 (98%) individuals. Haplotype diversities, FST comparisons, and exact tests of population differentiation showed that Marine groups were significantly different from Terrestrial groups based on mtDNA (p < 0.05). No statistically significant differences were found between Terrestrial and Mixed Economy groups. Demographic simulations support models in which Marine groups diverged from the others by ~14,000 cal BP. Y-chromosome results showed similar patterns but were not statistically significant due to small sample sizes and allelic dropout. DISCUSSION: These results support the hypothesis that Marine and Terrestrial economic groups represent distinct ancestral lineages who diverged during the time populations were expanding in the Americas, and may represent independent migrations into Fuego-Patagonia.


Assuntos
Arqueologia , Mitocôndrias , Humanos , Chile , Mitocôndrias/genética , Cromossomo Y , DNA Antigo , DNA Mitocondrial/genética
3.
Front Public Health ; 10: 986776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582371

RESUMO

Background: Whenever vaccines for a new pandemic or widespread epidemic are developed, demand greatly exceeds the available supply of vaccine doses in the crucial, initial phases of vaccination. Rationing protocols must then fulfill a number of ethical principles balancing equal treatment of individuals and prioritization of at-risk and instrumental subpopulations. For COVID-19, actual rationing methods used a territory-based first allocation stage based on proportionality to population size, followed by locally-implemented prioritization rules. The results of this procedure have been argued to be ethically problematic. Methods: We use a formal-analytical approach arising from the mathematical social sciences which allows to investigate whether any allocation methods (known or unknown) fulfill a combination of (ethical) desiderata and, if so, how they are formulated algorithmically. Results: Strikingly, we find that there exists one and only one method that allows to treat people equally while giving priority to those who are worse off. We identify this method down to the algorithmic level and show that it is easily implementable and it exhibits additional, desirable properties. In contrast, we show that the procedures used during the COVID-19 pandemic violate both principles. Conclusions: Our research delivers an actual algorithm that is readily applicable and improves upon previous ones. Since our axiomatic approach shows that any other algorithm would either fail to treat people equally or fail to prioritize those who are worse off, we conclude that ethical principles dictate the adoption of this algorithm as a standard for the COVID-19 or any other comparable vaccination campaigns.


Assuntos
COVID-19 , Vacinas , Humanos , COVID-19/prevenção & controle , Pandemias , Alocação de Recursos para a Atenção à Saúde , Algoritmos
4.
PLoS One ; 17(11): e0277771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36445929

RESUMO

As a historical nomadic group in Central Asia, Kazaks have mainly inhabited the steppe zone from the Altay Mountains in the East to the Caspian Sea in the West. Fine scale characterization of the genetic profile and population structure of Kazaks would be invaluable for understanding their population history and modeling prehistoric human expansions across the Eurasian steppes. With this mind, we characterized the maternal lineages of 200 Kazaks from Jetisuu at mitochondrial genome level. Our results reveal that Jetisuu Kazaks have unique mtDNA haplotypes including those belonging to the basal branches of both West Eurasian (R0, H, HV) and East Eurasian (A, B, C, D) lineages. The great diversity observed in their maternal lineages may reflect pivotal geographic location of Kazaks in Eurasia and implies a complex history for this population. Comparative analyses of mitochondrial genomes of human populations in Central Eurasia reveal a common maternal genetic ancestry for Turko-Mongolian speakers and their expansion being responsible for the presence of East Eurasian maternal lineages in Central Eurasia. Our analyses further indicate maternal genetic affinity between the Sherpas from the Tibetan Plateau with the Turko-Mongolian speakers.


Assuntos
Genoma Mitocondrial , Humanos , Animais , Resolução de Problemas , Etnicidade , DNA Mitocondrial/genética , Gerbillinae , China
5.
Sci Rep ; 12(1): 10747, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750688

RESUMO

Archaeological and genomic evidence suggest that modern Homo sapiens have roamed the planet for some 300-500 thousand years. In contrast, global human mitochondrial (mtDNA) diversity coalesces to one African female ancestor ("Mitochondrial Eve") some 145 thousand years ago, owing to the » gene pool size of our matrilineally inherited haploid genome. Therefore, most of human prehistory was spent in Africa where early ancestors of Southern African Khoisan and Central African rainforest hunter-gatherers (RFHGs) segregated into smaller groups. Their subdivisions followed climatic oscillations, new modes of subsistence, local adaptations, and cultural-linguistic differences, all prior to their exodus out of Africa. Seven African mtDNA haplogroups (L0-L6) traditionally captured this ancient structure-these L haplogroups have formed the backbone of the mtDNA tree for nearly two decades. Here we describe L7, an eighth haplogroup that we estimate to be ~ 100 thousand years old and which has been previously misclassified in the literature. In addition, L7 has a phylogenetic sublineage L7a*, the oldest singleton branch in the human mtDNA tree (~ 80 thousand years). We found that L7 and its sister group L5 are both low-frequency relics centered around East Africa, but in different populations (L7: Sandawe; L5: Mbuti). Although three small subclades of African foragers hint at the population origins of L5'7, the majority of subclades are divided into Afro-Asiatic and eastern Bantu groups, indicative of more recent admixture. A regular re-estimation of the entire mtDNA haplotype tree is needed to ensure correct cladistic placement of new samples in the future.


Assuntos
DNA Mitocondrial , Genética Populacional , Idoso de 80 Anos ou mais , População Negra/genética , DNA Mitocondrial/genética , Feminino , Haplótipos/genética , Humanos , Recém-Nascido , Filogenia
6.
Science ; 377(6601): 72-79, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35771911

RESUMO

Micronesia began to be peopled earlier than other parts of Remote Oceania, but the origins of its inhabitants remain unclear. We generated genome-wide data from 164 ancient and 112 modern individuals. Analysis reveals five migratory streams into Micronesia. Three are East Asian related, one is Polynesian, and a fifth is a Papuan source related to mainland New Guineans that is different from the New Britain-related Papuan source for southwest Pacific populations but is similarly derived from male migrants ~2500 to 2000 years ago. People of the Mariana Archipelago may derive all of their precolonial ancestry from East Asian sources, making them the only Remote Oceanians without Papuan ancestry. Female-inherited mitochondrial DNA was highly differentiated across early Remote Oceanian communities but homogeneous within, implying matrilocal practices whereby women almost never raised their children in communities different from the ones in which they grew up.


Assuntos
DNA Antigo , DNA Mitocondrial , Migração Humana , Povo Asiático/genética , Criança , DNA Mitocondrial/genética , Feminino , História Antiga , Migração Humana/história , Humanos , Masculino , Micronésia , Oceania
7.
iScience ; 24(5): 102487, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34036249

RESUMO

Native Mexican populations are crucial for understanding the genetic ancestry of Aztec descendants and coexisting ethnolinguistic groups in the Valley of Mexico and elucidating the population dynamics of the prehistoric colonization of the Americas. Mesoamerican societies were multicultural in nature and also experienced significant admixture during Spanish colonization of the region. Despite these facts, Native Mexican Y chromosome diversity has been greatly understudied. To further elucidate their genetic history, we conducted a high-resolution Y chromosome analysis with Chichimecas, Nahuas, Otomies, Popolocas, Tepehuas, and Totonacas using 19 Y-short tandem repeat and 21 single nucleotide polymorphism loci. We detected enormous paternal genetic diversity in these groups, with haplogroups Q-MEH2, Q-M3, Q-Z768, Q-L663, Q-Z780, and Q-PV3 being identified. These data affirmed the southward colonization of the Americas via Beringia and connected Native Mexicans with indigenous populations from South-Central Siberia and Canada. They also suggested that multiple population dispersals gave rise to Y chromosome diversity in these populations.

8.
Nature ; 590(7844): 103-110, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33361817

RESUMO

Humans settled the Caribbean about 6,000 years ago, and ceramic use and intensified agriculture mark a shift from the Archaic to the Ceramic Age at around 2,500 years ago1-3. Here we report genome-wide data from 174 ancient individuals from The Bahamas, Haiti and the Dominican Republic (collectively, Hispaniola), Puerto Rico, Curaçao and Venezuela, which we co-analysed with 89 previously published ancient individuals. Stone-tool-using Caribbean people, who first entered the Caribbean during the Archaic Age, derive from a deeply divergent population that is closest to Central and northern South American individuals; contrary to previous work4, we find no support for ancestry contributed by a population related to North American individuals. Archaic-related lineages were >98% replaced by a genetically homogeneous ceramic-using population related to speakers of languages in the Arawak family from northeast South America; these people moved through the Lesser Antilles and into the Greater Antilles at least 1,700 years ago, introducing ancestry that is still present. Ancient Caribbean people avoided close kin unions despite limited mate pools that reflect small effective population sizes, which we estimate to be a minimum of 500-1,500 and a maximum of 1,530-8,150 individuals on the combined islands of Puerto Rico and Hispaniola in the dozens of generations before the individuals who we analysed lived. Census sizes are unlikely to be more than tenfold larger than effective population sizes, so previous pan-Caribbean estimates of hundreds of thousands of people are too large5,6. Confirming a small and interconnected Ceramic Age population7, we detect 19 pairs of cross-island cousins, close relatives buried around 75 km apart in Hispaniola and low genetic differentiation across islands. Genetic continuity across transitions in pottery styles reveals that cultural changes during the Ceramic Age were not driven by migration of genetically differentiated groups from the mainland, but instead reflected interactions within an interconnected Caribbean world1,8.


Assuntos
Arqueologia , Genética Populacional , Genoma Humano/genética , Migração Humana/história , Ilhas , Dinâmica Populacional/história , Arqueologia/ética , Região do Caribe , América Central/etnologia , Cerâmica/história , Genética Populacional/ética , Mapeamento Geográfico , Haplótipos , História Antiga , Humanos , Masculino , Densidade Demográfica , América do Sul/etnologia
9.
Am J Hum Genet ; 106(3): 371-388, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142644

RESUMO

The population of the United States is shaped by centuries of migration, isolation, growth, and admixture between ancestors of global origins. Here, we assemble a comprehensive view of recent population history by studying the ancestry and population structure of more than 32,000 individuals in the US using genetic, ancestral birth origin, and geographic data from the National Geographic Genographic Project. We identify migration routes and barriers that reflect historical demographic events. We also uncover the spatial patterns of relatedness in subpopulations through the combination of haplotype clustering, ancestral birth origin analysis, and local ancestry inference. Examples of these patterns include substantial substructure and heterogeneity in Hispanics/Latinos, isolation-by-distance in African Americans, elevated levels of relatedness and homozygosity in Asian immigrants, and fine-scale structure in European descents. Taken together, our results provide detailed insights into the genetic structure and demographic history of the diverse US population.


Assuntos
Emigração e Imigração , Genética Populacional , Haplótipos , Análise por Conglomerados , Demografia , Humanos , Estados Unidos
10.
PLoS One ; 14(10): e0214564, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31596857

RESUMO

A number of studies carried out since the early '70s has investigated the effects of isolation on genetic variation within and among human populations in diverse geographical contexts. However, no extensive analysis has been carried out on the heterogeneity among genomes within isolated populations. This issue is worth exploring since events of recent admixture and/or subdivision could potentially disrupt the genetic homogeneity which is to be expected when isolation is prolonged and constant over time. Here, we analyze literature data relative to 87,815 autosomal single-nucleotide polymorphisms, which were obtained from a total of 28 European populations. Our results challenge the traditional paradigm of population isolates as structured as genetically (and genomically) uniform entities. In fact, focusing on the distribution of variance of intra-population diversity measures across individuals, we show that the inter-individual heterogeneity of isolated populations is at least comparable to the open ones. More in particular, three small and highly inbred isolates (Sappada, Sauris and Timau in Northeastern Italy) were found to be characterized by levels of inter-individual heterogeneity largely exceeding that of all other populations, possibly due to relatively recent events of genetic introgression. Finally, we propose a way to monitor the effects of inter-individual heterogeneity in disease-gene association studies.


Assuntos
Bases de Dados de Ácidos Nucleicos , Polimorfismo de Nucleotídeo Único , População Branca/genética , Adulto , Feminino , Genética Populacional , Genética Humana , Humanos , Masculino
11.
Am J Phys Anthropol ; 169(3): 482-497, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31125126

RESUMO

OBJECTIVES: From a genetic perspective, relatively little is known about how mass emigrations of African, European, and Asian peoples beginning in the 16th century affected Indigenous Caribbean populations. Therefore, we explored the impact of serial colonization on the genetic variation of the first Caribbean islanders. MATERIALS AND METHODS: Sixty-four members of St. Vincent's Garifuna Community and 36 members of Trinidad's Santa Rosa First People's Community (FPC) of Arima were characterized for mitochondrial DNA and Y-chromosome diversity via direct sequencing and targeted SNP and STR genotyping. A subset of 32 Garifuna and 18 FPC participants were genotyped using the GenoChip 2.0 microarray. The resulting data were used to examine genetic diversity, admixture, and sex biased gene flow in the study communities. RESULTS: The Garifuna were most genetically comparable to African descendant populations, whereas the FPC were more similar to admixed American groups. Both communities also exhibited moderate frequencies of Indigenous American matrilines and patrilines. Autosomal SNP analysis indicated modest Indigenous American ancestry in these populations, while both showed varying degrees of African, European, South Asian, and East Asian ancestry, with patterns of sex-biased gene flow differing between the island communities. DISCUSSION: These patterns of genetic variation are consistent with historical records of migration, forced, or voluntary, and suggest that different migration events shaped the genetic make-up of each island community. This genomic study is the highest resolution analysis yet conducted with these communities, and provides a fuller understanding of the complex bio-histories of Indigenous Caribbean peoples in the Lesser Antilles.


Assuntos
Grupos Raciais/genética , Grupos Raciais/história , Adulto , Cromossomos Humanos Y/genética , DNA/genética , DNA Mitocondrial/genética , Feminino , Genética Populacional , História do Século XV , História do Século XVI , História do Século XVIII , História do Século XIX , História Antiga , Migração Humana/história , Humanos , Masculino , São Vicente e Granadinas , Trinidad e Tobago
12.
Science ; 362(6419)2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30409807

RESUMO

Studies of the peopling of the Americas have focused on the timing and number of initial migrations. Less attention has been paid to the subsequent spread of people within the Americas. We sequenced 15 ancient human genomes spanning from Alaska to Patagonia; six are ≥10,000 years old (up to ~18× coverage). All are most closely related to Native Americans, including those from an Ancient Beringian individual and two morphologically distinct "Paleoamericans." We found evidence of rapid dispersal and early diversification that included previously unknown groups as people moved south. This resulted in multiple independent, geographically uneven migrations, including one that provides clues of a Late Pleistocene Australasian genetic signal, as well as a later Mesoamerican-related expansion. These led to complex and dynamic population histories from North to South America.


Assuntos
Genoma Humano , Migração Humana , Indígenas Norte-Americanos/genética , Conjuntos de Dados como Assunto , Ásia Oriental/etnologia , Genômica , Humanos , América do Norte , Polimorfismo de Nucleotídeo Único , Dinâmica Populacional , Sibéria/etnologia , América do Sul
13.
Sci Rep ; 8(1): 851, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339819

RESUMO

Jammu and Kashmir (J&K), the Northern most State of India, has been under-represented or altogether absent in most of the phylogenetic studies carried out in literature, despite its strategic location in the Himalayan region. Nonetheless, this region may have acted as a corridor to various migrations to and from mainland India, Eurasia or northeast Asia. The belief goes that most of the migrations post-late-Pleistocene were mainly male dominated, primarily associated with population invasions, where female migration may thus have been limited. To evaluate female-centered migration patterns in the region, we sequenced 83 complete mitochondrial genomes of unrelated individuals belonging to different ethnic groups from the state. We observed a high diversity in the studied maternal lineages, identifying 19 new maternal sub-haplogroups (HGs). High maternal diversity and our phylogenetic analyses suggest that the migrations post-Pleistocene were not strictly paternal, as described in the literature. These preliminary observations highlight the need to carry out an extensive study of the endogamous populations of the region to unravel many facts and find links in the peopling of India.


Assuntos
Migração Humana , DNA Mitocondrial/química , DNA Mitocondrial/classificação , DNA Mitocondrial/metabolismo , Feminino , Variação Genética , Haplótipos , Humanos , Índia , Masculino , Mitocôndrias/genética , Filogenia
14.
Am J Phys Anthropol ; 164(4): 837-852, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29076141

RESUMO

OBJECTIVES: In this study, we characterized genetic diversity in the Svans from northwestern Georgia to better understand the phylogeography of their genetic lineages, determine whether genetic diversity in the highland South Caucasus has been shaped by language or geography, and assess whether Svan genetic diversity was structured by regional residence patterns. MATERIALS AND METHODS: We analyzed mtDNA and Y-chromosome variation in 184 individuals from 13 village districts and townlets located throughout the region. For all individuals, we analyzed mtDNA diversity through control region sequencing, and, for males, we analyzed Y-chromosome diversity through SNP and STR genotyping. The resulting data were compared with those for populations from the Caucasus and Middle East. RESULTS: We observed significant mtDNA heterogeneity in Svans, with haplogroups U1-U7, H, K, and W6 being common there. By contrast, ∼78% of Svan males belonged to haplogroup G2a, with the remainder falling into four other haplogroups (J2a1, I2, N, and R1a). While showing a distinct genetic profile, Svans also clustered with Caucasus populations speaking languages from different families, suggesting a deep common ancestry for all of them. The mtDNA data were not structured by geography or linguistic affiliation, whereas the NRY data were influenced only by geography. DISCUSSION: These patterns of genetic variation confirm a complex set of geographic sources and settlement phases for the Caucasus highlands. Such patterns may also reflect social and cultural practices in the region. The high frequency and antiquity of Y-chromosome haplogroup G2a in this region further points to its emergence there.


Assuntos
Variação Genética/genética , Haplótipos/genética , População Branca/genética , Antropologia Física , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Feminino , República da Geórgia , Humanos , Masculino , Filogenia , População Branca/classificação
15.
Sci Rep ; 7(1): 1984, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28512355

RESUMO

The Mediterranean shores stretching between Sicily, Southern Italy and the Southern Balkans witnessed a long series of migration processes and cultural exchanges. Accordingly, present-day population diversity is composed by multiple genetic layers, which make the deciphering of different ancestral and historical contributes particularly challenging. We address this issue by genotyping 511 samples from 23 populations of Sicily, Southern Italy, Greece and Albania with the Illumina GenoChip Array, also including new samples from Albanian- and Greek-speaking ethno-linguistic minorities of Southern Italy. Our results reveal a shared Mediterranean genetic continuity, extending from Sicily to Cyprus, where Southern Italian populations appear genetically closer to Greek-speaking islands than to continental Greece. Besides a predominant Neolithic background, we identify traces of Post-Neolithic Levantine- and Caucasus-related ancestries, compatible with maritime Bronze-Age migrations. We argue that these results may have important implications in the cultural history of Europe, such as in the diffusion of some Indo-European languages. Instead, recent historical expansions from North-Eastern Europe account for the observed differentiation of present-day continental Southern Balkan groups. Patterns of IBD-sharing directly reconnect Albanian-speaking Arbereshe with a recent Balkan-source origin, while Greek-speaking communities of Southern Italy cluster with their Italian-speaking neighbours suggesting a long-term history of presence in Southern Italy.

16.
Sci Rep ; 7: 41614, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145502

RESUMO

Human populations are often dichotomized into "isolated" and "open" categories using cultural and/or geographical barriers to gene flow as differential criteria. Although widespread, the use of these alternative categories could obscure further heterogeneity due to inter-population differences in effective size, growth rate, and timing or amount of gene flow. We compared intra and inter-population variation measures combining novel and literature data relative to 87,818 autosomal SNPs in 14 open populations and 10 geographic and/or linguistic European isolates. Patterns of intra-population diversity were found to vary considerably more among isolates, probably due to differential levels of drift and inbreeding. The relatively large effective size estimated for some population isolates challenges the generalized view that they originate from small founding groups. Principal component scores based on measures of intra-population variation of isolated and open populations were found to be distributed along a continuum, with an area of intersection between the two groups. Patterns of inter-population diversity were even closer, as we were able to detect some differences between population groups only for a few multidimensional scaling dimensions. Therefore, different lines of evidence suggest that dichotomizing human populations into open and isolated groups fails to capture the actual relations among their genomic features.


Assuntos
Variação Genética , Genética Populacional , Genômica , População Branca/genética , Análise por Conglomerados , Europa (Continente) , Evolução Molecular , Fluxo Gênico , Patrimônio Genético , Genômica/métodos , Geografia , Humanos , Dinâmica Populacional , Isolamento Reprodutivo
18.
PLoS One ; 10(10): e0139192, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26447794

RESUMO

Historical discourses about the Caribbean often chronicle West African and European influence to the general neglect of indigenous people's contributions to the contemporary region. Consequently, demographic histories of Caribbean people prior to and after European contact are not well understood. Although archeological evidence suggests that the Lesser Antilles were populated in a series of northward and eastern migratory waves, many questions remain regarding the relationship of the Caribbean migrants to other indigenous people of South and Central America and changes to the demography of indigenous communities post-European contact. To explore these issues, we analyzed mitochondrial DNA and Y-chromosome diversity in 12 unrelated individuals from the First Peoples Community in Arima, Trinidad, and 43 unrelated Garifuna individuals residing in St. Vincent. In this community-sanctioned research, we detected maternal indigenous ancestry in 42% of the participants, with the remainder having haplotypes indicative of African and South Asian maternal ancestry. Analysis of Y-chromosome variation revealed paternal indigenous American ancestry indicated by the presence of haplogroup Q-M3 in 28% of the male participants from both communities, with the remainder possessing either African or European haplogroups. This finding is the first report of indigenous American paternal ancestry among indigenous populations in this region of the Caribbean. Overall, this study illustrates the role of the region's first peoples in shaping the genetic diversity seen in contemporary Caribbean populations.


Assuntos
Cromossomos Humanos Y , DNA Mitocondrial/genética , Variação Genética , Povo Asiático/genética , População Negra/genética , Região do Caribe , Hibridização Genômica Comparativa , DNA Mitocondrial/análise , DNA Mitocondrial/classificação , Feminino , Genética Populacional , Haplótipos , Humanos , Masculino , Filogenia , Polimorfismo de Nucleotídeo Único , São Vicente e Granadinas , Trinidad e Tobago , População Branca/genética
19.
Am J Phys Anthropol ; 155(3): 352-68, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25043798

RESUMO

Puerto Rico and the surrounding islands rest on the eastern fringe of the Caribbean's Greater Antilles, located less than 100 miles northwest of the Lesser Antilles. Puerto Ricans are genetic descendants of pre-Columbian peoples, as well as peoples of European and African descent through 500 years of migration to the island. To infer these patterns of pre-Columbian and historic peopling of the Caribbean, we characterized genetic diversity in 326 individuals from the southeastern region of Puerto Rico and the island municipality of Vieques. We sequenced the mitochondrial DNA (mtDNA) control region of all of the samples and the complete mitogenomes of 12 of them to infer their putative place of origin. In addition, we genotyped 121 male samples for 25 Y-chromosome single nucleotide polymorphism and 17 STR loci. Approximately 60% of the participants had indigenous mtDNA haplotypes (mostly from haplogroups A2 and C1), while 25% had African and 15% European haplotypes. Three A2 sublineages were unique to the Greater Antilles, one of which was similar to Mesoamerican types, while C1b haplogroups showed links to South America, suggesting that people reached the island from the two distinct continental source areas. However, none of the male participants had indigenous Y-chromosomes, with 85% of them instead being European/Mediterranean and 15% sub-Saharan African in origin. West Eurasian Y-chromosome short tandem repeat haplotypes were quite diverse and showed similarities to those observed in southern Europe, North Africa and the Middle East. These results attest to the distinct, yet equally complex, pasts for the male and female ancestors of modern day Puerto Ricans.


Assuntos
Variação Genética/genética , Haplótipos/genética , Indígenas Sul-Americanos/genética , População Branca/genética , Antropologia Física , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Feminino , Migração Humana , Humanos , Masculino , Porto Rico , Índias Ocidentais
20.
Nat Commun ; 5: 3513, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24781250

RESUMO

The search for a method that utilizes biological information to predict humans' place of origin has occupied scientists for millennia. Over the past four decades, scientists have employed genetic data in an effort to achieve this goal but with limited success. While biogeographical algorithms using next-generation sequencing data have achieved an accuracy of 700 km in Europe, they were inaccurate elsewhere. Here we describe the Geographic Population Structure (GPS) algorithm and demonstrate its accuracy with three data sets using 40,000-130,000 SNPs. GPS placed 83% of worldwide individuals in their country of origin. Applied to over 200 Sardinians villagers, GPS placed a quarter of them in their villages and most of the rest within 50 km of their villages. GPS's accuracy and power to infer the biogeography of worldwide individuals down to their country or, in some cases, village, of origin, underscores the promise of admixture-based methods for biogeography and has ramifications for genetic ancestry testing.


Assuntos
Genética Populacional/métodos , Algoritmos , Europa (Continente) , Genoma Humano/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...