Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Neuroimage Clin ; 37: 103293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36527995

RESUMO

Sensory perceptual alterations such as sensory sensitivities in autism have been proposed to be caused by differences in sensory observation (Likelihood) or in forming models of the environment (Prior), which result in an increase in bottom-up information flow relative to top-down control. To investigate this conjecture, we had autistic individuals (AS) and neurotypicals (NT) perform a decision-under-uncertainty paradigm while undergoing functional magnetic resonance imaging (fMRI). There were no group differences in task performance and in Prior and Likelihood representations in brain activity. However, there were significant group differences in overall task activity, with the AS group showing significantly greater activation in the bilateral precuneus, mid-occipital gyrus, cuneus, superior frontal gyrus (SFG) and left putamen relative to the NT group. Further, when pooling the data across both groups, we found that those with higher AQ scores showed greater activity in the left cuneus and precuneus. Effective connectivity analysis using dynamic causal modelling (DCM) revealed that group differences in BOLD signals were underpinned by increased activity within sensory regions and a net increase in bottom-up connectivity from the occipital region to the precuneus and the left SFG. These findings support the hypothesis of increased bottom-up information flow in autism during sensory learning tasks.


Assuntos
Transtorno Autístico , Humanos , Transtorno Autístico/diagnóstico por imagem , Mapeamento Encefálico , Lobo Occipital , Córtex Pré-Frontal , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
2.
Comput Psychiatr ; 5(1): 140-158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38773994

RESUMO

A general consensus persists that sensory-perceptual differences in autism, such as hypersensitivities to light or sound, result from an overreliance on new (rather than prior) sensory observations. However, conflicting Bayesian accounts of autism remain unresolved as to whether such alterations are caused by more precise sensory observations (precise likelihood model) or by forming a less precise model of the sensory context (hypo-priors model). We used a decision-under-uncertainty paradigm that manipulated uncertainty in both likelihoods and priors. Contrary to model predictions we found no differences in reliance on likelihood in autistic group (AS) compared to neurotypicals (NT) and found no differences in subjective prior variance between groups. However, we found reduced context adjustment in the AS group compared to NT. Further, the AS group showed heightened variability in their relative weighting of sensory information (vs. prior) on a trial-by-trial basis. When participants were aligned on a continuum of autistic traits, we found no associations with likelihood reliance or prior variance but found an increase in likelihood precision with autistic traits. These findings together provide empirical evidence for intact priors, precise likelihood, reduced context updating and heightened variability during sensory learning in autism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...