Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 14(6): 163, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38808300

RESUMO

The use of new materials in the field of biofuel production has been represented as a step in the development of remarkable catalysts. The use of lipases in the production of biodiesel is often seen as a cost-limiting step, as the operating expenses in recovering such catalysts can lead to unfeasible market expectations. In this study, hydroxyapatite (HAp) particles were evaluated as a support to immobilize commercial lipase, following application in ethyl ester synthesis. First, hydroxyapatite was synthesized through the co-precipitation method at constant pH and selected as a support to be used in enzyme immobilization. The characterization of the biocatalyst support materials produced was carried out using DRX, BET, FTIR, TGA, and SEM analysis. The lipase from Thermomyces lanuginosus was then immobilized in the matrices, and, subsequently, there was transesterification of the vegetable oil deodorization distillate (VODD). The biodiesel samples generated showed that they were within commercial standards, achieving ester conversion greater than 96.5%. Other properties such as density (0.87 g.cm-3) and viscosity (4.36 mm2.s-1) meet the specifications required by ASTM to be used as a biofuel. In the experiment planning technique, the results revealed an experimental trend and a defined behavior: a higher lipase loading in the immobilization and the use of temperatures in the range of 40-50 °C favor high conversions of ethyl esters. Thus, this confirms that the enzymatic chemical catalyst was able to form the main fatty acid esters even using a residual lipid raw material.

2.
Biotechnol Bioeng ; 119(3): 725-742, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958126

RESUMO

The esterification reactions catalyzed by lipases are among the most significant biochemical processes of industrial relevance. The lipases have the function of versatility by catalyzing a diversity of reactions with extreme ease, obtaining quality products with high yield. Therefore, enzyme-catalyzed esterification has gained increasing attention in many applications, due to the importance of derived products. More specifically, lipase-catalyzed esterification reactions have attracted interest in research over the past decade, due to the increased use of organic esters in the chemical and biotechnology industry. These esters can be obtained by three techniques: extraction from natural sources, chemical and enzymatic syntheses. Biotechnological processes have offered several advantages and are shown as a competitive alternative to chemical methods due to high catalytic efficiency, mild operating conditions, and selectivity of natural catalysts. These an industrial point of view, reactions catalyzed by enzymes are the most economical approach to achieve green products with no toxicity and no harm to human health. Thus, this review presents a descriptive evaluation of the trends and perspectives applied to enzymatic esterification, mainly for the synthesis of esters with different properties, such as aromatics, emulsifiers, and lubricants using the esterification process. An emphasis is given to essential factors, which affect the lipase-catalyzed esterification reaction. In which, the parameters are dependent on the lipase source, a form of the biocatalyst (free or immobilized), the polarity of the reaction medium, the molar ratio between alcohol and acid, among other variables, are also discussed.


Assuntos
Enzimas Imobilizadas , Ésteres , Biocatálise , Biotransformação , Enzimas Imobilizadas/metabolismo , Esterificação , Ésteres/metabolismo , Etanol , Humanos , Lipase/química , Lubrificantes
3.
Bioprocess Biosyst Eng ; 44(10): 2205-2215, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34089091

RESUMO

This study investigated the glycerolysis of babassu oil by Burkholderia cepacia lipase immobilized on SiO2-PVA particles in a continuous packed bed reactor. Experiments were conducted in a solvent-free system at 273.15 K either in an inert atmosphere or in the presence of cocoa butter to prevent lipid oxidation. The reactor (15 × 55 mm) was run at a fixed space time of 9.8 h using different molar ratios of babassu oil to glycerol (1:3, 1:6, 1:9, 1:12, and 1:15) to assess the effects of reactant molar ratio on monoacylglycerol productivity and selectivity. Nitrogen atmosphere and cocoa butter were equally effective in inhibiting lipid oxidation, indicating that addition of cocoa butter to glycerolysis reactions may be an interesting cost-reduction strategy. An oil/glycerol molar ratio of 1:9 resulted in the highest productivity (52.3 ± 2.9 mg g-1 h-1) and selectivity (31.5 ± 1.8%). Residence time distribution data were fitted to an axial dispersion model for closed-vessel boundary conditions, giving a mass transfer coefficient (kc) of 3.4229 × 10-6 m s-1. A kinetic model based on elementary steps of the studied reaction was written in Scilab and compared with experimental data, providing standard deviations in the range of 5.5-7.5%.


Assuntos
Arecaceae/metabolismo , Reatores Biológicos , Burkholderia cepacia/enzimologia , Enzimas Imobilizadas/metabolismo , Glicerol/metabolismo , Lipase/metabolismo , Monoglicerídeos/metabolismo , Óleos de Plantas/metabolismo , Antioxidantes/metabolismo , Gorduras na Dieta/metabolismo , Hidrólise , Cinética , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...