Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Strategies Trauma Limb Reconstr ; 10(1): 5-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25716478

RESUMO

The Ortho-SUV frame (OSF) is a novel hexapod circular external fixator which draws upon the innovation of the Ilizarov method and the advantages of hexapod construction in the three-dimensional control of bone segments. Stability of fixation is critical to the success or failure of an external circular fixator for fracture or osteotomy healing. In vitro biomechanical modelling study was performed comparing the stability of the OSF under load in both original form and after dynamisation to the Ilizarov fixator in all zones of the femur utilising optimal frame configuration. A superior performance of the OSF in terms of resistance to deforming forces in both original and dynamised forms over that of the original Ilizarov fixator was found. The OSF shows higher rigidity than the Ilizarov in the control of forces acting upon the femur. This suggests better stabilisation of femoral fractures and osteotomies and thus improved healing with a reduced incidence of instability-related bone segment deformity, non-union and delayed union.

2.
Adv Orthop ; 2014: 268567, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25610658

RESUMO

Circular fixation according to the Ilizarov method is a well-recognised modality of treatment for trauma and deformity. One shortcoming of the traditional fixator is its limited ability to correct more than one plane of deformity simultaneously, leading to lengthy frame-time indices. Hexapod circular fixation utilising computer guidance is commonplace for complex multidimensional deformity but difficulties often arise with correction of femoral deformity due to bulkiness of the frame construct, particularly in proximal deformity and in patients of increased size. The Ortho-SUV frame is an innovative hexapod which permits unique customisation to individual patient anatomy to maximise tolerance and optimal range of deformity correction. We hypothesised that the optimal configuration and maximal degree of correction achievable by the Ortho-SUV frame can be biomechanically modelled and applied clinically. A study was constructed using Ortho-SUV and femoral limb models to measure deformity correction via differing frame constructs and determine optimal frame configuration to achieve correction in proximal, middle, and distal third deformities with respect to the soft tissue envelope. The ideal frame configuration is determined for correction of deformity in all locations of the femur with the maximal parameters of correction calculated whilst avoiding and mitigating soft tissue irritation from bulky frame construction.

3.
Int Orthop ; 38(4): 865-72, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24370977

RESUMO

PURPOSES: This study compared the six-axis external fixator Ortho-SUV Frame (OSF) and the Ilizarov apparatus (IA) in femoral deformity correction. Our specific questions were: (1) which of the fixators (OSF or IA) provides shorter period of femoral deformity correction, and (2) which of the fixators (OSF or IA) provides better accuracy of correction. METHODS: We retrospectively analysed 123 cases of femoral deformities (127 femora): 45 (47) treated with OSF (20 male and 27 female) and 78 (80) with IA (53 male and 27 female). The average age in the OSF group was 34.6 (range, 18-66) and in the IA group 35.8 (range, 18-76). All the deformities were categorized according to the number of planes and deformity components as simple, middle and complex deformities. RESULTS: Elimination of simple deformities in the IA group took 58.3 ± 21.4 days, EFI 58.8 ± 39.8 days/cm, and lengthening was 4.6 ± 1.98 cm. Middle deformities were 71.3 ± 26.2, 61.9 ± 30.3 and 4 ± 2, respectively. In complex deformities we had 105.2 ± 21.8, 79.3 ± 35.4 and 3.2 ± 1.45, respectively. Normal alignment was achieved in 55.0% of cases in IA. In 45.0% of cases we had residual deformity. Elimination of simple deformations in the OSF group took 55.3 ± 12.8 days, EFI 47.5 ± 23 days/cm, and lengthening 4.5 ± 1.1 сm. Middle deformities were 43.6 ± 18.9, 59 ± 14.6 and 3.6 ± 2, respectively. In complex deformities we had 44.9 ± 11.5, 57.5 ± 9.4 and 3.6 ± 1.7, respectively. In the OSF group normal alignment was achieved in 85.1%. In 14.9% there was residual deformity. CONCLUSION: Using OSF simplifies deformity correction and reduces its period by 2.3 times in complex deformities and by 1.6 times in middle deformities. Accuracy of correction with OSF was significantly higher than correction with IA.


Assuntos
Fixadores Externos , Técnica de Ilizarov/instrumentação , Deformidades Articulares Adquiridas/cirurgia , Adolescente , Adulto , Idoso , Desenho de Equipamento , Feminino , Humanos , Deformidades Articulares Adquiridas/complicações , Deformidades Articulares Adquiridas/diagnóstico por imagem , Artropatias/congênito , Artropatias/diagnóstico por imagem , Desigualdade de Membros Inferiores/etiologia , Desigualdade de Membros Inferiores/cirurgia , Masculino , Pessoa de Meia-Idade , Radiografia , Adulto Jovem
4.
J Foot Ankle Surg ; 52(3): 324-30, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23522737

RESUMO

External fixators enable distraction osteogenesis and gradual foot deformity corrections. Hexapod fixators have become more popular than the Ilizarov apparatus. The Ortho-SUV Frame™ (OSF; Ortho-SUV Ltd, St. Petersburg, Russia), a hexapod that was developed in 2006, allows flexible joint attachment such that multiple assemblies are available. We assessed the reduction capability of several assemblies. An artificial bone model with a 270-mm-long longitudinal foot was used. A 130-mm tibial full ring was attached 60 mm proximal to the ankle joint. A 140-mm, two-third ring forefoot was attached perpendicular to the metatarsal bone axis. A 130-mm, two-third ring hindfoot was attached parallel to the tibial ring. A V-osteotomy, which was combined with 2 oblique osteotomies at the navicular-cuboid bone and the calcaneus, was performed. The middle part of the foot, including the talus, was connected to the tibial ring. We assessed 5 types of forefoot applications and 4 types of hindfoot applications. The range of correction included flexion/extension in the sagittal plane, adduction/abduction in the horizontal plane, and pronation/supination in the coronal plane. Additionally, we reported the short-term results in 9 clinical cases. The forefoot applications in which the axis of the hexapod was parallel to the axis of the metatarsal bones had good results, with 52°/76° for flexion/extension, 48°/53° for adduction/abduction, and 43°/51° for pronation/supination. The hindfoot applications in which the hexapod encircled the ankle joint also had good results, with corresponding values of 47°/58°, 20°/35°, and 28°/31°. Clinically, all deformities were corrected as planned. Thus, multiple assemblies and a wide range of corrections are available with the OSF.


Assuntos
Fixadores Externos , Deformidades do Pé/cirurgia , Adulto , Feminino , Deformidades do Pé/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Osteotomia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...