Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 129(19): 194109, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-19026047

RESUMO

An efficient algorithm of the surface and volume polarization for electrostatics (SVPE) method in self-consistent reaction field (SCRF) theory, denoted by SV(1)PE, has been proposed to simulate direct volume polarization potential with a single layer of point charges outside the solute cavity while the indirect effects of volume polarization on surface polarization are still simulated with multiple layers of point charges. The free energies of solvation calculated using the SV(1)PE algorithm (implemented in GAUSSIAN03) reproduce the corresponding values calculated using the standard SVPE implementation within an error of only approximately 0.1% when the solute cavity is defined by the standard 0.001e/a(0) (3) solute charge isodensity contour. The SV(1)PE results are much less sensitive to the used cavity size in comparison with the well-established surface and simulated volume polarization for electrostatics [SS(V)PE] method which simulates volume polarization through an additional surface charge distribution on the cavity surface. The SCRF calculations using the SV(1)PE method are more efficient than those using the original SVPE method.


Assuntos
Algoritmos , Solventes/química , Elétrons , Eletricidade Estática , Propriedades de Superfície , Termodinâmica
2.
J Chem Phys ; 127(12): 124308, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17902904

RESUMO

The ground and excited states of the UO(2) molecule have been studied using a Dirac-Coulomb intermediate Hamiltonian Fock-space coupled cluster approach (DC-IHFSCC). This method is unique in describing dynamic and nondynamic correlation energies at relatively low computational cost. Spin-orbit coupling effects have been fully included by utilizing the four-component Dirac-Coulomb Hamiltonian from the outset. Complementary calculations on the ionized systems UO(2) (+) and UO(2) (2+) as well as on the ions U(4+) and U(5+) were performed to assess the accuracy of this method. The latter calculations improve upon previously published theoretical work. Our calculations confirm the assignment of the ground state of the UO(2) molecule as a (3)Phi(2u) state that arises from the 5f(1)7s(1) configuration. The first state from the 5f(2) configuration is found above 10,000 cm(-1), whereas the first state from the 5f(1)6d(1) configuration is found at 5,047 cm(-1).

3.
J Phys Chem B ; 109(49): 23571-8, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16375333

RESUMO

A density functional theory study of the elementary steps that lead to the removal of CO(ads(Pt)) over alloyed and sequentially deposited Pt/Ru bimetallic nanoclusters is presented. The reaction energies and activation barriers for the H2O(ads(Ru)) dissociation and CO(ads(Pt)) + OH(ads(Ru)) reaction are estimated in solid-gas interface and in a microsolvated environment to determine which surface morphology is more tolerant to COads poisoning. On the basis of the energetics, the sequentially deposited Pt/Ru nanocluster is predicted to be a much more promising anode catalyst than the alloy cluster surface in fuel cell applications.

4.
J Chem Phys ; 122(22): 224113, 2005 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-15974657

RESUMO

The intermediate Hamiltonian (IH) coupled-cluster method makes possible the use of very large model spaces in coupled-cluster calculations without running into intruder states. This is achieved at the cost of approximating some of the IH matrix elements, which are not taken at their rigorous effective Hamiltonian (EH) value. The extrapolated intermediate Hamiltonian (XIH) approach proposed here uses a parametrized IH and extrapolates it to the full EH, with model spaces larger by several orders of magnitude than those possible in EH coupled-cluster methods. The flexibility and resistance to intruders of the IH approach are thus combined with the accuracy of full EH. Various extrapolation schemes are described. A pilot application to the electron affinities (EAs) of alkali atoms is presented, where converged EH results are obtained by XIH for model spaces of approximately 20,000 determinants; direct EH calculations converge only for a one-dimensional model space. Including quantum electrodynamic effects, the average XIH error for the EAs is 0.6 meV and the largest error is 1.6 meV. A new reference estimate for the EA of Fr is proposed at 486+/-2 meV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...