Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 73(3): 461-473, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055903

RESUMO

As professional secretory cells, ß-cells require adaptable mRNA translation to facilitate a rapid synthesis of proteins, including insulin, in response to changing metabolic cues. Specialized mRNA translation programs are essential drivers of cellular development and differentiation. However, in the pancreatic ß-cell, the majority of factors identified to promote growth and development function primarily at the level of transcription. Therefore, despite its importance, the regulatory role of mRNA translation in the formation and maintenance of functional ß-cells is not well defined. In this study, we have identified a translational regulatory mechanism mediated by the specialized mRNA translation factor eukaryotic initiation factor 5A (eIF5A), which facilitates the maintenance of ß-cell identity and function. The mRNA translation function of eIF5A is only active when it is posttranslationally modified ("hypusinated") by the enzyme deoxyhypusine synthase (DHPS). We have discovered that the absence of ß-cell DHPS in mice reduces the synthesis of proteins critical to ß-cell identity and function at the stage of ß-cell maturation, leading to a rapid and reproducible onset of diabetes. Therefore, our work has revealed a gatekeeper of specialized mRNA translation that permits the ß-cell, a metabolically responsive secretory cell, to maintain the integrity of protein synthesis necessary during times of induced or increased demand.


Assuntos
Células Secretoras de Insulina , Fatores de Iniciação de Peptídeos , Animais , Camundongos , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Células Secretoras de Insulina/metabolismo , Biossíntese de Proteínas , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo
2.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37162889

RESUMO

As professional secretory cells, beta cells require adaptable mRNA translation to facilitate a rapid synthesis of proteins, including insulin, in response to changing metabolic cues. Specialized mRNA translation programs are essential drivers of cellular development and differentiation. However, in the pancreatic beta cell, the majority of factors identified to promote growth and development function primarily at the level of transcription. Therefore, despite its importance, the regulatory role of mRNA translation in the formation and maintenance of functional beta cells is not well defined. In this study, we have identified a translational regulatory mechanism in the beta cell driven by the specialized mRNA translation factor, eukaryotic initiation factor 5A (eIF5A), which facilitates beta cell maturation. The mRNA translation function of eIF5A is only active when it is post-translationally modified ("hypusinated") by the enzyme deoxyhypusine synthase (DHPS). We have discovered that the absence of beta cell DHPS in mice reduces the synthesis of proteins critical to beta cell identity and function at the stage of beta cell maturation, leading to a rapid and reproducible onset of diabetes. Therefore, our work has revealed a gatekeeper of specialized mRNA translation that permits the beta cell, a metabolically responsive secretory cell, to maintain the integrity of protein synthesis necessary during times of induced or increased demand. ARTICLE HIGHLIGHTS: Pancreatic beta cells are professional secretory cells that require adaptable mRNA translation for the rapid, inducible synthesis of proteins, including insulin, in response to changing metabolic cues. Our previous work in the exocrine pancreas showed that development and function of the acinar cells, which are also professional secretory cells, is regulated at the level of mRNA translation by a specialized mRNA translation factor, eIF5A HYP . We hypothesized that this translational regulation, which can be a response to stress such as changes in growth or metabolism, may also occur in beta cells. Given that the mRNA translation function of eIF5A is only active when the factor is post-translationally modified ("hypusinated") by the enzyme deoxyhypusine synthase (DHPS), we asked the question: does DHPS/eIF5A HYP regulate the formation and maintenance of functional beta cells? We discovered that in the absence of beta cell DHPS in mice, eIF5A is not hypusinated (activated), which leads to a reduction in the synthesis of critical beta cell proteins that interrupts pathways critical for identity and function. This translational regulation occurs at weaning age, which is a stage of cellular stress and maturation for the beta cell. Therefore without DHPS/eIF5A HYP , beta cells do not mature and mice progress to hyperglycemia and diabetes. Our findings suggest that secretory cells have a mechanism to regulate mRNA translation during times of cellular stress. Our work also implies that driving an increase in mRNA translation in the beta cell might overcome or possibly reverse the beta cell defects that contribute to early dysfunction and the progression to diabetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...