Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 3307, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120230

RESUMO

Methods for site-selective chemistry on proteins are in high demand for the synthesis of chemically modified biopharmaceuticals, as well as for applications in chemical biology, biosensors and more. Inadvertent N-terminal gluconoylation has been reported during expression of proteins with an N-terminal His tag. Here we report the development of this side-reaction into a general method for highly selective N-terminal acylation of proteins to introduce functional groups. We identify an optimized N-terminal sequence, GHHHn- for the reaction with gluconolactone and 4-methoxyphenyl esters as acylating agents, facilitating the introduction of functionalities in a highly selective and efficient manner. Azides, biotin or a fluorophore are introduced at the N-termini of four unrelated proteins by effective and selective acylation with the 4-methoxyphenyl esters. This Gly-Hisn tag adds the unique capability for highly selective N-terminal chemical acylation of expressed proteins. We anticipate that it can find wide application in chemical biology and for biopharmaceuticals.


Assuntos
Dipeptídeos/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Acilação , Sequência de Aminoácidos , Azidas/química , Biotina/metabolismo , Ésteres/metabolismo , Corantes Fluorescentes/química , Gluconatos/metabolismo , Lactonas/metabolismo , Peptídeos/química , Polietilenoglicóis/química , Processamento de Proteína Pós-Traducional
2.
Chembiochem ; 18(7): 574-612, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28067438

RESUMO

Glycobiology is the comprehensive biological investigation of carbohydrates. The study of the role and function of complex carbohydrates often requires the attachment of carbohydrates to surfaces, their tagging with fluorophores, or their conversion into natural or non-natural glycoconjugates, such as glycopeptides or glycolipids. Glycobiology and its "omics", glycomics, require easy and robust chemical methods for the construction of these glycoconjugates. This review gives an overview of the rapidly expanding field of chemical reactions that selectively convert unprotected carbohydrates into glycoconjugates through the anomeric position. The discussion is divided in terms of the anomeric bond type of the newly formed glycoconjugates, including O-, N-, S-, and C-glycosides.


Assuntos
Glicoconjugados/síntese química , Monossacarídeos/química , Oligossacarídeos/química , Técnicas de Química Sintética , Glicosilação
3.
Basic Clin Pharmacol Toxicol ; 120(4): 380-389, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27767251

RESUMO

Utilization of functionalized liposomes as the means of targeted delivery of therapeutics may enhance specific transport of biologically active drugs to target tissues, while avoiding or reducing undesired side effects. In the present investigation, peptide-conjugated cationic liposomes were constructed with the aim of targeting integrins (i.e. vitronectin and/or fibronectin receptors) on activated endothelial cells. The peptide-conjugated liposomes induced only cytotoxicity at the highest concentration in non-activated or activated endothelial cells, as well as in co-culture of endothelial cells and macrophages. There was unaltered secretion of cytokines after exposure of peptide-conjugated liposomes to endothelial cells, indicating that the materials were not inflammogenic. Liposomes with a peptide targeting the fibronectin receptor (integrin α5ß1) were more effective in targeting of activated endothelial cells, as compared to a liposome with a peptide that targeted both the fibronectin and vitronectin receptors, as well as liposomes with a control peptide. The liposome targeted to the fibronectin receptor also displayed uptake in endothelial cells in co-culture with activated macrophages. Therefore, this study demonstrates the feasibility of constructing a peptide-conjugated cationic liposome, which displays targeting to activated endothelial cells at concentrations that are not cytotoxic or inflammogenic to the cells.


Assuntos
Sistemas de Liberação de Medicamentos , Células Endoteliais/efeitos dos fármacos , Integrinas/metabolismo , Monócitos/efeitos dos fármacos , Oligopeptídeos/química , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/imunologia , Relação Dose-Resposta a Droga , Endocitose , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana , Integrina alfa5beta1/metabolismo , Integrina alfaVbeta3/metabolismo , Lipopolissacarídeos/farmacologia , Lipossomos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Microscopia de Fluorescência , Terapia de Alvo Molecular , Monócitos/imunologia , Monócitos/metabolismo , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...