Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS One ; 19(7): e0306832, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38980894

RESUMO

Species' range size is a fundamental unit of analysis in biodiversity research, given its association with extinction risk and species richness. One of its most notable patterns is its positive relationship with latitude, which has been considered an ecogeographical rule called Rapoport's rule. Despite this rule being confirmed for various taxonomic groups, its validity has been widely discussed and several taxa still lack a formal assessment. Different hypotheses have been proposed to explain their potential mechanisms, with those related to temperature and elevational being the most supported thus far. In this study, we employed two level of analyses (cross-species and assemblage) to investigate the validity of Rapoport's rule in spiny lizards (genus Sceloporus). Additionally, we evaluated four environmental-related hypotheses (minimum temperature, temperature variability, temperature stability since the last glacial maximum, and elevation) posed to explain such pattern, contrasting our results to those patterns expected under a null model of range position. Our results provided support for Rapoport's rule at both levels of analyses, contrasting with null expectations. Consistently, minimum temperature and elevation were the most relevant variables explaining the spatial variation in range size. At the cross-species level, our null simulations revealed that both variables deviated significantly from random expectations. Conversely, at the assemblage level, none of the variables were statistically different from the expected relationships. We discussed the implication of our findings in relation to the ecology and evolution of spiny lizards.


Assuntos
Lagartos , Animais , Lagartos/fisiologia , Temperatura , Biodiversidade , Geografia , Ecossistema
3.
Glob Chang Biol ; 30(4): e17282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619685

RESUMO

Given the current environmental crisis, biodiversity protection is one of the most urgent socio-environmental priorities. However, the effectiveness of protected areas (PAs), the primary strategy for safeguarding ecosystems, is challenged by global climate change (GCC), with evidence showing that species are shifting their distributions into new areas, causing novel species assemblages. Therefore, there is a need to evaluate PAs' present and future effectiveness for biodiversity under the GCC. Here, we analyzed changes in the spatiotemporal patterns of taxonomic and phylogenetic diversity (PD) of plants associated with the Neotropical seasonally dry forest (NSDF) under GCC scenarios. We modeled the climatic niche of over 1000 plant species in five representative families (in terms of abundance, dominance, and endemism) of the NSDF. We predicted their potential distributions in the present and future years (2040, 2060, and 2080) based on an intermediate scenario of shared socio-economic pathways (SSP 3.70), allowing species to disperse to new sites or constrained to the current distribution. Then, we tested if the current PAs network represents the taxonomic and phylogenetic diversities. Our results suggest that GCC could promote novel species assemblages with local responses (communities' modifications) across the biome. In general, models predicted losses in the taxonomic and phylogenetic diversities of all the five plant families analyzed across the distribution of the NSDF. However, in the northern floristic groups (i.e., Antilles and Mesoamerica) of the NSDF, taxonomic and PD will be stable in GCC projections. In contrast, across the NSDF in South America, some cores will lose diversity while others will gain diversity under GCC scenarios. PAs in some NSDF regions appeared insufficient to protect the NSDF diversity. Thus, there is an urgent need to assess how the PA system could be better reconfigured to warrant the protection of the NSDF.


Dada la actual crisis ambiental, la protección de la biodiversidad se presenta como una de las prioridades socio ambientales más urgentes. Sin embargo, la efectividad de las áreas protegidas (AP), la estrategia principal para salvaguardar los ecosistemas, se ve desafiada por el cambio climático global (CCG), con evidencia que muestra que las especies están desplazando sus distribuciones hacia nuevas áreas, provocando conjuntos de especies novedosos. Por lo tanto, es necesario evaluar la efectividad actual y futura de las AP para la biodiversidad bajo el CCG. En este contexto, analizamos cambios en los patrones espacio­temporales de diversidad taxonómica y filogenética de plantas asociadas al bosque estacionalmente seco neotropical (BES) bajo escenarios de CCG. Modelamos el nicho climático de más de 1,000 especies de plantas en cinco familias representativas (en términos de abundancia, dominancia y endemismo) del BES. Pronosticamos sus distribuciones potenciales en los años actuales y futuros (2040, 2060 y 2080) basándonos en un escenario intermedio de trayectorias socioeconómicas compartidas (SSP 3.70), permitiendo que las especies se dispersen a nuevos sitios o estén limitadas a la distribución actual. Luego, evaluamos si la red actual de AP representa las diversidades taxonómicas y filogenéticas. Nuestros resultados sugieren que el CCG podría promover conjuntos de especies novedosos con respuestas locales (modificaciones en las comunidades) en todo el bioma. En general, los modelos pronosticaron pérdidas en las diversidades taxonómicas y filogenéticas de las cinco familias de plantas analizadas en la distribución del BES. Sin embargo, en los grupos florísticos del norte (es decir, Antillas y Mesoamérica) del BSDN, la diversidad taxonómica y filogenética se mantendrá estable en las proyecciones de CCG. En cambio, en toda la región del BES en América del Sur, algunos núcleos perderán diversidad mientras que otros ganarán diversidad bajo escenarios de CCG. Algunas AP en regiones del BES parecen ser insuficientes para proteger la diversidad del bioma. Por lo tanto, es urgente evaluar cómo se podría reconfigurar mejor el sistema de AP para garantizar la protección del BES.


Assuntos
Ecossistema , Florestas , Filogenia , Biodiversidade , Mudança Climática
4.
Glob Chang Biol ; 30(4): e17271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613240

RESUMO

Ecological and evolutionary theories have proposed that species traits should be important in mediating species responses to contemporary climate change; yet, empirical evidence has so far provided mixed evidence for the role of behavioral, life history, or ecological characteristics in facilitating or hindering species range shifts. As such, the utility of trait-based approaches to predict species redistribution under climate change has been called into question. We develop the perspective, supported by evidence, that trait variation, if used carefully can have high potential utility, but that past analyses have in many cases failed to identify an explanatory value for traits by not fully embracing the complexity of species range shifts. First, we discuss the relevant theory linking species traits to range shift processes at the leading (expansion) and trailing (contraction) edges of species distributions and highlight the need to clarify the mechanistic basis of trait-based approaches. Second, we provide a brief overview of range shift-trait studies and identify new opportunities for trait integration that consider range-specific processes and intraspecific variability. Third, we explore the circumstances under which environmental and biotic context dependencies are likely to affect our ability to identify the contribution of species traits to range shift processes. Finally, we propose that revealing the role of traits in shaping species redistribution may likely require accounting for methodological variation arising from the range shift estimation process as well as addressing existing functional, geographical, and phylogenetic biases. We provide a series of considerations for more effectively integrating traits as well as extrinsic and methodological factors into species redistribution research. Together, these analytical approaches promise stronger mechanistic and predictive understanding that can help society mitigate and adapt to the effects of climate change on biodiversity.


Assuntos
Biodiversidade , Mudança Climática , Filogenia , Geografia , Fenótipo
5.
Proc Biol Sci ; 291(2018): 20232705, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38444334

RESUMO

The correct identification of variables affecting parasite diversity and assemblage composition at different spatial scales is crucial for understanding how pathogen distribution responds to anthropogenic disturbance and climate change. Here, we used a database of avian haemosporidian parasites to test how the taxonomic and phylogenetic diversity and phylogenetic structure of the genera Plasmodium, Haemoproteus and Leucocytozoon from three zoogeographic regions are related to surrogate variables of Earth's energy input, habitat heterogeneity (climatic diversity, landscape heterogeneity, host richness and human disturbance) and ecological interactions (resource use), which was measured by a novel assemblage-level metric related to parasite niche overlap (degree of generalism). We found that different components of energy input explained variation in richness for each genus. We found that human disturbance influences the phylogenetic structure of Haemoproteus while the degree of generalism explained richness and phylogenetic structure of Plasmodium and Leucocytozoon genera. Furthermore, landscape attributes related to human disturbance (human footprint) can filter Haemoproteus assemblages by their phylogenetic relatedness. Finally, assembly processes related to resource use within parasite assemblages modify species richness and phylogenetic structure of Plasmodium and Leucocytozoon assemblages. Overall, our study highlighted the genus-specific patterns with the different components of Earth's energy budget, human disturbances and degree of generalism.


Assuntos
Haemosporida , Especificidade de Hospedeiro , Humanos , Animais , Filogenia , Efeitos Antropogênicos , Aves
6.
J Evol Biol ; 37(3): 290-301, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367271

RESUMO

There is no scientific consensus about whether and how species' evolutionary age, or the elapsed time since their origination, might affect their probability of going extinct. Different age-dependent extinction (ADE) patterns have been proposed in theoretical and empirical studies, while the existence of a consistent and universal pattern across the tree of life remains debated. If evolutionary age predicts species extinction probability, then the study of ADE should comprise the elapsed time and the ecological process acting on species from their origin to their extinction or to the present for extant species. Additionally, given that closely related species share traits associated with fitness, evolutionary proximity could generate similar ADE patterns. Considering the historical context and extinction selectivity based on evolutionary relatedness, we build on previous theoretical work to formalize the Clade Replacement Theory (CRT) as a framework that considers the ecological and evolutionary aspects of species age and extinction probability to produce testable predictions on ADE patterns. CRT's domain is the diversification dynamics of two or more clades competing for environmental space throughout time, and its propositions or derived hypotheses are as follows: (i) incumbency effects by an early arriving clade that limit the colonization and the diversification of a younger clade leading to a negative ADE scenario (younger species more prone to extinction than older ones) and (ii) an ecological shift triggered by an environmental change that imposes a new selective regime over the environmental space and leads to a positive ADE scenario (extinction probability increasing with age). From these propositions, we developed the prediction that the ADE scenario would be defined by whether an ecological shift happens or not. We discuss how the CRT could be tested with empirical data and provide examples where it could be applied. We hope this article will provide a common ground to unify results from different fields and foster new empirical tests of the mechanisms derived here while providing insights into CRT theoretical structuration.


Assuntos
Evolução Biológica , Extinção Biológica , Fenótipo
7.
Naturwissenschaften ; 111(1): 2, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224365

RESUMO

The honeybee (Apis mellifera) is one of the most important pollinator species because it can gather resources from a vast variety of plant species, including both natives and introduced, across its geographical distribution. Although A. mellifera interacts with a large diversity of plants and shares resources with other pollinators, there are some plant species with which it interacts more frequently than others. Here, we evaluated the plant traits (i.e., plant length, abundance of bloomed individuals, number of open flowers, and stamen length) that would affect the honeybee visit frequencies to the flowers in a coastal environment in the Gulf of Mexico. Moreover, we evaluated which native bee species (and their body size) overlap floral resource with A. mellifera. We registered 998 plant-bee interactions between 35 plant species and 47 bee species. We observed that plant species with low height and with high abundances of bloomed individuals are positively related to a high frequency of visits by A. mellifera. Moreover, we found that A. mellifera tends to share a higher number of plant species with other bee species with a similar or smaller body size than with bigger species, which makes them a competitor for the resource with honeybees. Our results highlight that the impacts of A. mellifera on plants and native bees could be anticipated based on its individual's characteristics (i.e., plant height and abundance of bloomed individuals) and body size, respectively.


Assuntos
Meio Ambiente , Areia , Humanos , Abelhas , Animais , Tamanho Corporal , Flores , Fenótipo
8.
Nat Ecol Evol ; 7(12): 1993-2003, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932384

RESUMO

Understanding how temperature determines the distribution of life is necessary to assess species' sensitivities to contemporary climate change. Here, we test the importance of temperature in limiting the geographic ranges of ectotherms by comparing the temperatures and areas that species occupy to the temperatures and areas species could potentially occupy on the basis of their physiological thermal tolerances. We find that marine species across all latitudes and terrestrial species from the tropics occupy temperatures that closely match their thermal tolerances. However, terrestrial species from temperate and polar latitudes are absent from warm, thermally tolerable areas that they could potentially occupy beyond their equatorward range limits, indicating that extreme temperature is often not the factor limiting their distributions at lower latitudes. This matches predictions from the hypothesis that adaptation to cold environments that facilitates survival in temperate and polar regions is associated with a performance trade-off that reduces species' abilities to contend in the tropics, possibly due to biotic exclusion. Our findings predict more direct responses to climate warming of marine ranges and cool range edges of terrestrial species.


Assuntos
Mudança Climática , Temperatura Baixa , Temperatura
9.
Proc Biol Sci ; 290(2006): 20231066, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37700646

RESUMO

Tropical lands harbour the highest number of species, resulting in the ubiquitous latitudinal diversity gradient (LDG). However, exceptions to this pattern have been observed in some taxa, explained by the interaction between the evolutionary histories and environmental factors that constrain species' physiological and ecological requirements. Here, we applied a deconstruction approach to map the detailed species richness patterns of Actinopterygian freshwater fishes at the class and order levels and to disentangle their drivers using geographical ranges and a phylogeny, comprising 77% (12 557) of all described species. We jointly evaluated seven evolutionary and ecological hypotheses posited to explain the LDG: diversification rate, time for speciation, species-area relationship, environmental heterogeneity, energy, temperature seasonality and past temperature stability. We found distinct diversity gradients across orders, including expected, bimodal and inverse LDGs. Despite these differences, the positive effect of evolutionary time explained patterns for all orders, where species-rich regions are inhabited by older species compared to species-poor regions. Overall, the LDG of each order has been shaped by a unique combination of factors, highlighting the importance of performing a joint evaluation of evolutionary, historical and ecological factors at different taxonomic levels to reach a comprehensive understanding on the causes driving global species richness patterns.


Assuntos
Evolução Biológica , Peixes , Animais , Filogenia , Água Doce , Geografia
10.
J Anim Ecol ; 92(11): 2126-2137, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37454385

RESUMO

Bird-plant seed-dispersal networks are structural components of ecosystems. The role of bird species in seed-dispersal networks (from less [peripheral] to more connected [central]), determines the interaction patterns and their ecosystem services. These roles may be driven by morphological and functional traits as well as evolutionary, geographical and environmental properties acting at different spatial extents. It is still unknown if such drivers are equally important in determining species centrality at different network levels, from individual local networks to the global meta-network representing interactions across all local networks. Using 308 networks covering five continents and 11 biogeographical regions, we show that at the global meta-network level species' range size was the most important driver of species centrality, with more central species having larger range sizes, which would facilitate the interaction with a higher number of plants and thus the maintenance of seed-dispersal interactions. At the local network level, body mass was the only driver with a significant effect, implying that local factors related to resource availability are more important at this level of network organisation than those related to broad spatial factors such as range sizes. This could also be related to the mismatch between species-level traits, which do not consider intraspecific variation, and the local networks that can depend on such variation. Taken together, our results show that the drivers determining species centrality are relative to the levels of network organisation, suggesting that prediction of species functional roles in seed-dispersal interactions requires combined local and global approaches.


Las redes de dispersión de semillas entre aves y plantas son componentes estructurales de los ecosistemas. El rol de las especies de aves en estas redes de dispersión de semillas (de menos [periféricas] a más conectadas [centrales]), determina los patrones de interacción y sus servicios ecosistémicos. Estos roles pueden ser impulsados por rasgos morfológicos y funcionales, propiedades evolutivas, geográficas y ambientales que actúan en diferentes extensiones espaciales. Todavía se desconoce si dichos impulsores son igualmente importantes para determinar la centralidad de las especies en diferentes niveles de red, desde redes locales individuales hasta la meta-red global que representa todas las interacciones en las redes locales. Usando 308 redes abarcando cinco continentes y once regiones biogeográficas, mostramos que a nivel de meta-red global, el tamaño de la distribución geográfica de las especies fue el factor más determinante de la centralidad de las especies, con especies más centrales siendo aquellas que tienen distribuciones más grandes, lo que les facilitaría la interacción con un mayor número de plantas y por lo tanto el mantenimiento de las interacciones de dispersión de semillas. A nivel de las redes locales, la masa corporal fue el único impulsor con un efecto significativo, lo que implica que los factores locales relacionados con la disponibilidad de recursos son más importantes en este nivel de organización que los relacionados con factores espaciales amplios, como el tamaño de las distribuciones. Esto también podría estar relacionado con el desajuste entre los rasgos a nivel de especie, que no consideran la variación intraespecífica, y las redes locales que pueden depender de dicha variación. En conjunto, nuestros resultados muestran que los impulsores que determinan la centralidad de las especies en las redes de interacción son relativos a los niveles de organización de la red, lo que sugiere que la predicción de los roles funcionales de las especies en las interacciones de dispersión de semillas requiere enfoques locales y globales combinados.


Assuntos
Ecossistema , Dispersão de Sementes , Animais , Aves , Sementes , Plantas
11.
Nat Ecol Evol ; 7(4): 524-534, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36878986

RESUMO

A major challenge in ecology and evolution is to disentangle the mechanisms driving broad-scale variation in biological traits such as body size, colour, thermal physiology traits and behaviour. Climate has long been thought to drive trait evolution and abiotic filtering of trait variation in ectotherms because their thermal performance and fitness are closely related to environmental conditions. However, previous studies investigating climatic variables associated with trait variation have lacked a mechanistic description of the underpinning processes. Here, we use a mechanistic model to predict how climate affects thermal performance of ectotherms and thereby the direction and strength of the effect of selection on different functional traits. We show that climate drives macro-evolutionary patterns in body size, cold tolerance and preferred body temperatures among lizards, and that trait variation is more constrained in regions where selection is predicted to be stronger. These findings provide a mechanistic explanation for observations on how climate drives trait variation in ectotherms through its effect on thermal performance. By connecting physical, physiological and macro-evolutionary principles, the model and results provide an integrative, mechanistic framework for predicting organismal responses to present climates and climate change.


Assuntos
Lagartos , Animais , Temperatura , Temperatura Baixa , Mudança Climática , Ecologia
12.
AoB Plants ; 15(1): plac056, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36654988

RESUMO

The scientific work of Alexander von Humboldt was influenced by his interaction with the diversity and natural wealth of the Neotropics. He proposed that climate determines plant diversity along elevational gradients based on his observations. Here, we evaluated the most prominent climate-based hypotheses in explaining plant diversity along an elevational gradient that Humboldt himself visited during his journey across Mexico. Specifically, we examined how climatic variables and forest-use intensity affected species richness and phylogenetic structure of major angiosperm life forms (trees, shrubs, epiphytes, herbs and lianas) along the Cofre de Perote mountain, Veracruz, Mexico. We analysed species richness and phylogenetic structure of angiosperms at eight sites between 30 to 3500 m a.s.l. We estimated the phylogenetic structure using a mega-phylogeny of angiosperms and the abundance-weighted net relatedness index. We considered multiple environmental factors' direct and indirect effects by applying a piecewise structural equation modelling approach. Each life form responds differently to the environmental variables included in our model; however, it is observed that temperature is the main predictor of the taxonomic and phylogenetic diversity of the angiosperms studied, both when the different life forms are grouped and separated. Potential evapotranspiration and precipitation are variables that also influence some life forms' diversity, especially taxonomic diversity. The forest-use intensity negatively affected only the taxonomic diversity of trees. These results highlight the influence of studying the different life forms of angiosperms in diversity gradient models and show the great influence that temperature has in conjunction with other environmental variables to promote the taxonomic and phylogenetic diversity of plant communities. Given the current global environmental crisis, an integrative biogeographically oriented vision based on Humboldt's method is necessary. Honouring the work of Humboldt and continuing his legacy demands more research to understand the causes behind elevational diversity gradients.

13.
Ecol Lett ; 26(2): 291-301, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36468276

RESUMO

Global ecosystems are facing a deepening biodiversity crisis, necessitating robust approaches to quantifying species extinction risk. The lower limit of the macroecological relationship between species range and body size has long been hypothesized as an estimate of the relationship between the minimum viable range size (MVRS) needed for species persistence and the organismal traits that affect space and resource requirements. Here, we perform the first explicit test of this assumption by confronting the MVRS predicted by the range-body size relationship with an independent estimate based on the scale of synchrony in abundance among spatially separated populations of riverine fish. We provide clear evidence of a positive relationship between the scale of synchrony and species body size, and strong support for the MVRS set by the lower limit of the range-body size macroecological relationship. This MVRS may help prioritize first evaluations for unassessed or data-deficient taxa in global conservation assessments.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Extinção Biológica , Peixes , Espécies em Perigo de Extinção
14.
Sci Rep ; 12(1): 7728, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546343

RESUMO

Despite the long-standing interest in the organization of ant communities across elevational gradients, few studies have incorporated the evolutionary information to understand the historical processes that underlay such patterns. Through the evaluation of phylogenetic α and ß-diversity, we analyzed the structure of leaf-litter ant communities along the Cofre de Perote mountain in Mexico and evaluated whether deterministic- (i.e., habitat filtering, interspecific competition) or stochastic-driven processes (i.e., dispersal limitation) were driving the observed patterns. Lowland and some highland sites showed phylogenetic clustering, whereas intermediate elevations and the highest site presented phylogenetic overdispersion. We infer that strong environmental constraints found at the bottom and the top elevations are favoring closely-related species to prevail at those elevations. Conversely, less stressful climatic conditions at intermediate elevations suggest interspecific interactions are more important in these environments. Total phylogenetic dissimilarity was driven by the turnover component, indicating that the turnover of ant species along the mountain is actually shifts of lineages adapted to particular locations resembling their ancestral niche. The greater phylogenetic dissimilarity between communities was related to greater temperature differences probably due to narrow thermal tolerances inherent to several ant lineages that evolved in more stable conditions. Our results suggest that the interplay between environmental filtering, interspecific competition and habitat specialization plays an important role in the assembly of leaf-litter ant communities along elevational gradients.


Assuntos
Formigas , Animais , Biodiversidade , Evolução Biológica , Ecossistema , México , Filogenia
15.
Proc Natl Acad Sci U S A ; 119(15): e2103745119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377801

RESUMO

Body size and shape fundamentally determine organismal energy requirements by modulating heat and mass exchange with the environment and the costs of locomotion, thermoregulation, and maintenance. Ecologists have long used the physical linkage between morphology and energy balance to explain why the body size and shape of many organisms vary across climatic gradients, e.g., why larger endotherms are more common in colder regions. However, few modeling exercises have aimed at investigating this link from first principles. Body size evolution in bats contrasts with the patterns observed in other endotherms, probably because physical constraints on flight limit morphological adaptations. Here, we develop a biophysical model based on heat transfer and aerodynamic principles to investigate energy constraints on morphological evolution in bats. Our biophysical model predicts that the energy costs of thermoregulation and flight, respectively, impose upper and lower limits on the relationship of wing surface area to body mass (S-MR), giving rise to an optimal S-MR at which both energy costs are minimized. A comparative analysis of 278 species of bats supports the model's prediction that S-MR evolves toward an optimal shape and that the strength of selection is higher among species experiencing greater energy demands for thermoregulation in cold climates. Our study suggests that energy costs modulate the mode of morphological evolution in bats­hence shedding light on a long-standing debate over bats' conformity to ecogeographical patterns observed in other mammals­and offers a procedure for investigating complex macroecological patterns from first principles.


Assuntos
Regulação da Temperatura Corporal , Quirópteros , Voo Animal , Asas de Animais , Animais , Fenômenos Biofísicos , Tamanho Corporal , Quirópteros/anatomia & histologia , Quirópteros/fisiologia , Clima , Voo Animal/fisiologia , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia
16.
Ecol Lett ; 25(1): 113-124, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34761496

RESUMO

Trophic specialisation is known to vary across space, but the environmental factors explaining such variation remain elusive. Here we used a global dataset of flower-visitor networks to evaluate how trophic specialisation varies between latitudinal zones (tropical and temperate) and across elevation gradients, while considering the environmental variation inherent in these spatial gradients. Specifically, we assessed the role of current (i.e., net primary productivity, temperature, and precipitation) and historical (i.e., temperature and precipitation stability) environmental factors in structuring the trophic specialisation of floral visitors. Spatial variations in trophic specialisation were not explained by latitudinal zones or elevation. Moreover, regardless of network location on the spatial gradient, there was a tendency for higher trophic specialisation in sites with high productivity and precipitation, whereas historical temperature stability was related to lower trophic specialisation. We highlight that both energetic constraints in animal foraging imposed by climate and resource availability may drive the global variation in trophic specialisation.


Assuntos
Clima , Flores , Animais , Estado Nutricional
17.
Biol Lett ; 17(12): 20210478, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34847787

RESUMO

Closely related species tend to be more similar than randomly selected species from the same phylogenetic tree. This pattern, known as a phylogenetic signal, has been extensively studied for intrinsic (e.g. morphology), as well as extrinsic (e.g. climatic preferences), properties but less so for ecological interactions. Phylogenetic signals of species interactions (i.e. resource use) can vary across time and space, but the causes behind such variations across broader spatial extents remain elusive. Here, we evaluated how current and historical climates influence phylogenetic signals of bat-fruit interaction networks across the Neotropics. We performed a model selection relating the phylogenetic signals of each trophic level (bats and plants) with a set of current and historical climatic factors deemed ecologically important in shaping biotic interactions. Bat and plant phylogenetic signals in bat-fruit interaction networks varied little with climatic factors, although bat phylogenetic signals positively covaried with annual precipitation. These findings indicated that water availability could increase resource availability, favouring higher niche partitioning of trophic resources among bat species and hence bat phylogenetic signals across bat-fruit interaction networks. Overall, our study advances our understanding of the spatial dynamics of bat-fruit interactions by highlighting the association of current climatic factors with phylogenetic patterns of biotic interactions.


Assuntos
Quirópteros , Animais , Ecossistema , Frutas , Estado Nutricional , Filogenia
18.
Nat Commun ; 12(1): 1198, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608528

RESUMO

Understanding how species' thermal limits have evolved across the tree of life is central to predicting species' responses to climate change. Here, using experimentally-derived estimates of thermal tolerance limits for over 2000 terrestrial and aquatic species, we show that most of the variation in thermal tolerance can be attributed to a combination of adaptation to current climatic extremes, and the existence of evolutionary 'attractors' that reflect either boundaries or optima in thermal tolerance limits. Our results also reveal deep-time climate legacies in ectotherms, whereby orders that originated in cold paleoclimates have presently lower cold tolerance limits than those with warm thermal ancestry. Conversely, heat tolerance appears unrelated to climate ancestry. Cold tolerance has evolved more quickly than heat tolerance in endotherms and ectotherms. If the past tempo of evolution for upper thermal limits continues, adaptive responses in thermal limits will have limited potential to rescue the large majority of species given the unprecedented rate of contemporary climate change.


Assuntos
Evolução Biológica , Fenômenos Fisiológicos Vegetais , Termotolerância/fisiologia , Adaptação Fisiológica , Animais , Clima , Mudança Climática , Planeta Terra , Ecologia , Temperatura Alta , Temperatura
19.
J Anim Ecol ; 89(8): 1754-1765, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32198927

RESUMO

Traditionally, most studies have described the organization of host-parasite interaction networks by considering only few host groups at limited geographical extents. However, host-parasite relationships are merged within different taxonomic groups and factors shaping these interactions likely differ between host and parasite groups, making group-level differences important to better understand the ecological and evolutionary dynamics of these interactive communities. Here we used a dataset of 629 ectoparasite species and 251 species of terrestrial mammals, comprising 10 orders distributed across the Nearctic and Neotropical regions of Mexico to assess the species-level drivers of mammalian ectoparasite faunas. Specifically, we evaluated whether body weight, geographical range size and within-range mammal species richness (i.e. diversity field) predict mammal ectoparasite species richness (i.e. degree centrality) and their closeness centrality within the mammal-ectoparasite network. In addition, we also tested if the observed patterns differ among mammal orders and if taxonomic closely related host mammals could more likely share the same set of ectoparasites. We found that ectoparasite species richness of small mammals (mainly rodents) with large proportional range sizes was high compared to large-bodied mammals, whereas the diversity field of mammals had no predictive value (except for bats). We also observed that taxonomic proximity was a main determinant of the probability to share ectoparasite species. Specifically, the probability to share ectoparasites in congeneric species reached up to 90% and decreased exponentially as the taxonomic distance increased. Further, we also detected that some ectoparasites are generalists and capable to infect mammalian species across different orders and that rodents have a remarkable role in the network structure, being closely connected to many other taxa. Hence, because many rodent species have synanthropic habits they could act as undesired reservoirs of disease agents for humans and urban animals. Considering the reported worldwide phenomenon of the proliferation of rodents accompanying the demographic decrease or even local extinction of large-bodied mammal species, these organisms may already be an increasing health threat in many regions of the world.


Assuntos
Ectoparasitoses , Parasitos , Doenças dos Roedores , Animais , Ectoparasitoses/veterinária , Interações Hospedeiro-Parasita , Mamíferos , México , Doenças dos Roedores/epidemiologia , Roedores
20.
Conserv Biol ; 34(5): 1281-1291, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32009235

RESUMO

Effective conservation policies require comprehensive knowledge of biodiversity. However, knowledge shortfalls still remain, hindering possibilities to improve decision making and built such policies. During the last 2 decades, conservationists have made great efforts to allocate resources as efficiently as possible but have rarely considered the idea that if research investments are also strategically allocated, it would likely fill knowledge gaps while simultaneously improving conservation actions. Therefore, prioritizing areas where both conservation and research actions could be conducted becomes a critical endeavor that can further maximize return on investment. We used Zonation, a conservation planning tool and geographical distributions of amphibians, birds, mammals, and reptiles to suggest and compare priority areas for conservation and research of terrestrial vertebrates worldwide. We also evaluated the degree of human disturbance in both types of priority areas by describing the value of the human footprint index within such areas. The spatial concordance between priority conservation and research areas was low: 0.36% of the world's land area. In these areas, we found it would be possible to protect almost half of the currently threatened species and to gather information on nearly 42% of data-deficient (DD) species. We also found that 6199 protected areas worldwide are located in such places, although only 35% of them have strict conservation purposes. Areas of consensus between conservation and research areas represent an opportunity for simultaneously conserving and acquiring knowledge of threatened and DD species of vertebrates. Although the picture is not the most encouraging, joint conservation and research efforts are possible and should be fostered to save vertebrate species from our own ignorance and extinction.


Áreas Prioritarias para la Conservación e Investigación Enfocadas en Vertebrados Terrestres Resumen Las políticas efectivas de conservación requieren del conocimiento integral de la biodiversidad. Sin embargo, la deficiencia de conocimiento todavía obstaculiza las posibilidades de mejorar la toma de decisiones y construir dichas políticas. Durante las últimas dos décadas, los conservacionistas han realizado un gran esfuerzo por asignar los recursos de la manera más eficiente posible, pero en pocas ocasiones han considerado la idea de que, si las inversiones para la investigación también se asignan estratégicamente, probablemente llenarían los vacíos de conocimiento a la vez que mejoran las acciones de conservación. Por lo tanto, la priorización de las áreas en donde podrían realizarse acciones de conservación y de investigación se convierte en un esfuerzo importante que puede avanzar todavía más la maximización del rendimiento de la inversión. Usamos Zonation, una herramienta de planeación de la conservación, junto con las distribuciones geográficas de anfibios, aves, mamíferos y reptiles para sugerir y comparar las áreas prioritarias para la conservación e investigación de los vertebrados terrestres en todo el mundo. También evaluamos el grado de perturbación humana en ambos tipos de áreas prioritarias mediante la descripción del valor del índice de la huella ecológica humana dentro de dichas áreas. La concordancia espacial entre las áreas prioritarias para la conservación y para la investigación fue baja: 0.36% del área total de suelo mundial. Encontramos que en estas áreas sería posible proteger a casi la mitad de las especies que se encuentran actualmente amenazadas, así como recopilar información sobre casi el 42% de las especies cuya información es deficiente. También descubrimos que 6199 áreas protegidas a nivel mundial están localizadas en dichos lugares, aunque sólo el 35% de ellas tiene propósitos estrictos de conservación. Las áreas de consenso entre la conservación y la investigación representan una oportunidad para simultáneamente conservar y adquirir conocimiento sobre las especies amenazadas de vertebrados y cuya información es deficiente. Aunque el futuro no es alentador, los esfuerzos conjuntos de conservación e investigación son posibles y deberían fomentarse para salvar a las especies de vertebrados de nuestra propia ignorancia y extinción.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Biodiversidade , Humanos , Répteis , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...