Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 27(6): 992-1001, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29325032

RESUMO

Friedreich ataxia (FRDA) is an inherited recessive disorder caused by a deficiency in the mitochondrial protein frataxin. There is currently no effective treatment for FRDA available, especially for neurological deficits. In this study, we tested diazoxide, a drug commonly used as vasodilator in the treatment of acute hypertension, on cellular and animal models of FRDA. We first showed that diazoxide increases frataxin protein levels in FRDA lymphoblastoid cell lines, via the mammalian target of rapamycin (mTOR) pathway. We then explored the potential therapeutic effect of diazoxide in frataxin-deficient transgenic YG8sR mice and we found that prolonged oral administration of 3 mpk/d diazoxide was found to be safe, but produced variable effects concerning efficacy. YG8sR mice showed improved beam walk coordination abilities and footprint stride patterns, but a generally reduced locomotor activity. Moreover, they showed significantly increased frataxin expression, improved aconitase activity, and decreased protein oxidation in cerebellum and brain mitochondrial tissue extracts. Further studies are needed before this drug should be considered for FRDA clinical trials.


Assuntos
Diazóxido/farmacologia , Ataxia de Friedreich/tratamento farmacológico , Proteínas de Ligação ao Ferro/efeitos dos fármacos , Animais , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Ataxia de Friedreich/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Frataxina
2.
Coord Chem Rev ; 372: 117-140, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32226092

RESUMO

In the last 30 years, since the discovery that vanadium is a cofactor found in certain enzymes of tunicates and possibly in mammals, different vanadium-based drugs have been developed targeting to treat different pathologies. So far, the in vitro studies of the insulin mimetic, antitumor and antiparasitic activity of certain compounds of vanadium have resulted in a great boom of its inorganic and bioinorganic chemistry. Chemical speciation studies of vanadium with amino acids under controlled conditions or, even in blood plasma, are essential for the understanding of the biotransformation of e.g. vanadium antidiabetic complexes at the physiological level, providing clues of their mechanism of action. The present article carries out a bibliographical research emphaticizing the chemical speciation of the vanadium with different amino acids and reviewing also some other important aspects such as its chemistry and therapeutical applications of several vanadium complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...