Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883749

RESUMO

The liver metabolizes ethanol through three enzymatic pathways: alcohol dehydrogenase (ADH), cytochrome p450 (also called MEOS), and catalase. Alcohol dehydrogenase class I (ADH1) is considered the most important enzyme for the metabolism of ethanol, MEOS and catalase (CAT) are considered minor alternative pathways. However, contradicting experiments suggest that the non-ADH1 pathway may have a greater relevance for the metabolism of ethanol than previously thought. In some conditions, ethanol is predominately metabolized to acetaldehyde via cytochrome P450 family 2 (CYP2E1), which is involved in the generation of reactive oxygen species (ROS), mainly through electron leakage to oxygen to form the superoxide (O2•-) radical or in catalyzed lipid peroxidation. The CAT activity can also participate in the ethanol metabolism that produces ROS via ethanol directly reacting with the CAT-H2O2 complex, producing acetaldehyde and water and depending on the H2O2 availability, which is the rate-limiting component in ethanol peroxidation. We have shown that CAT actively participates in lactate-stimulated liver ethanol oxidation, where the addition of lactate generates H2O2, which is used by CAT to oxidize ethanol to acetaldehyde. Therefore, besides its known role as a catalytic antioxidant component, the primary role of CAT could be to function in the metabolism of xenobiotics in the liver.

2.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628405

RESUMO

Smoking is a risk factor for a variety of deleterious conditions, such as cancer, respiratory disease and cardiovascular disease. Thrombosis is an important and common aspect of several cardiovascular disease states, whose risk is known to be increased by both first- and secondhand smoke. More recently, the residual cigarette smoke that persists after someone has smoked (referred to as thirdhand smoke or THS) has been gaining more attention, since it has been shown that it also negatively affects health. Indeed, we have previously shown that 6-month exposure to THS increases the risk of thrombogenesis. However, neither the time-dependence of THS-induced thrombus formation, nor its sex dependence have been investigated. Thus, in the present study, we investigated these issues in the context of a shorter exposure to THS, specifically 3 months, in male and female mice. We show that the platelets from 3-month THS-exposed mice exhibited enhanced activation by agonists. Moreover, we also show that mice of both sexes exposed to THS have decreased tail bleeding as well as decreased thrombus occlusion time. In terms of the role of sex, intersex disparities in thrombus development and hemostasis as well as in platelet aggregation were, interestingly, observed. Together, our findings show that exposing mice to THS for 3 months is sufficient to predispose them to thrombosis; which seems to be driven, at least in part, by an increased activity in platelets, and that it does not manifest equally in both sexes.


Assuntos
Doenças Cardiovasculares , Trombose , Poluição por Fumaça de Tabaco , Animais , Plaquetas , Feminino , Masculino , Camundongos , Agregação Plaquetária , Trombose/etiologia , Poluição por Fumaça de Tabaco/efeitos adversos
3.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269729

RESUMO

While cardiovascular disease (CVD) is the leading cause of death, major depressive disorder (MDD) is the primary cause of disability, affecting more than 300 million people worldwide. Interestingly, there is evidence that CVD is more prevalent in people with MDD. It is well established that neurotransmitters, namely serotonin and norepinephrine, are involved in the biochemical mechanisms of MDD, and consequently, drugs targeting serotonin-norepinephrine reuptake, such as duloxetine, are commonly prescribed for MDD. In this connection, serotonin and norepinephrine are also known to play critical roles in primary hemostasis. Based on these considerations, we investigated if duloxetine can be repurposed as an antiplatelet medication. Our results-using human and/or mouse platelets show that duloxetine dose-dependently inhibited agonist-induced platelet aggregation, compared to the vehicle control. Furthermore, it also blocked agonist-induced dense and α-granule secretion, integrin αIIbß3 activation, phosphatidylserine expression, and clot retraction. Moreover duloxetine-treated mice had a significantly prolonged occlusion time. Finally, duloxetine was also found to impair hemostasis. Collectively, our data indicate that the antidepressant duloxetine, which is a serotonin-norepinephrine antagonist, exerts antiplatelet and thromboprotective effects and inhibits hemostasis. Consequently, duloxetine, or a rationally designed derivative, presents potential benefits in the context of CVD, including that associated with MDD.


Assuntos
Transtorno Depressivo Maior , Trombose , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Cloridrato de Duloxetina/farmacologia , Cloridrato de Duloxetina/uso terapêutico , Hemostasia , Humanos , Camundongos , Norepinefrina/farmacologia , Ativação Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Serotonina/farmacologia , Antagonistas da Serotonina/farmacologia , Trombose/tratamento farmacológico , Trombose/metabolismo , Trombose/prevenção & controle
4.
Biochem Pharmacol ; 188: 114498, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675773

RESUMO

The aim of the present study was to elucidate how fructose is able to increase the rate of ethanol metabolism in the liver, an observation previously termed the fructose effect. Previous studies suggest that an increase in ATP consumption driven by glucose synthesis from fructose stimulates the oxidation of NADH in the mitochondrial respiratory chain, allowing faster oxidation of ethanol by alcohol dehydrogenase; however, this idea has been frequently challenged. We tested the effects of fructose, sorbose and tagatose both in vitro and in vivo. Both ethanol and each sugar were either added to isolated hepatocytes or injected intraperitoneally in the rat. In the in vitro experiments, samples were taken from the hepatocyte suspension in a time-dependent manner and deproteinized with perchloric acid. In the in vivo experiments, blood samples were taken every 15 min and the metabolites were determined in the plasma. These metabolites include ethanol, glucose, glycerol, sorbitol, lactate, fructose and sorbose. Ethanol oxidation by rat hepatocytes was increased by more than 50% with the addition of fructose. The stimulation was accompanied by increased glucose, glycerol, lactate and sorbitol production. A similar effect was observed with sorbose, while tagatose had no effect. The same pattern was observed in the in vivo experiments. This effect was abolished by inhibiting alcohol dehydrogenase with 4-methylpyrazole, whereas inhibition of the respiratory chain with cyanide did not affect the fructose effect. In conclusion, present results provide evidence that, by reducing glyceraldehyde and glycerol and fructose to sorbitol, respectively, NADH is consumed, allowing an increase in the elimination of ethanol. Hence, this effect is not linked to a stimulation of mitochondrial re-oxidation of NADH driven by ATP consumption.


Assuntos
Etanol/metabolismo , Frutose/administração & dosagem , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Taxa de Depuração Metabólica/efeitos dos fármacos , Álcool Desidrogenase/antagonistas & inibidores , Álcool Desidrogenase/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Injeções Intraperitoneais , Masculino , Taxa de Depuração Metabólica/fisiologia , Ratos
5.
Biochem Pharmacol ; 164: 283-288, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30981876

RESUMO

Liver slices from starved rats and incubated without other substrates oxidized ethanol at a rate of 4.1 µmols • h-1 • g-1. Addition of 10 mmols • L-1 lactate increased this rate 2-fold. 4-methylpyrazole (4-MP), an alcohol dehydrogenase (ADH) inhibitor, drastically decreased the rate of ethanol oxidation, but did not inhibit the stimulation due to lactate. In the same context, liver acetaldehyde production, as the main by-product of ethanol oxidation, appeared to be much less inhibited by 4-MP in the presence of lactate. Aminotriazole (a catalase inhibitor), however, completely inhibited the stimulation. Furthermore, 2-hydroxybut-3-ynoate, an alpha-hydroxy acid oxidase inhibitor, completely abolished the stimulated ethanol oxidation promoted by lactate. Moreover, to determine the origin of the H2O2 produced, we did liver subcellular fractionation and then analyzed their content in peroxisomes, mitochondria and catalase. We observed that cytoplasm and peroxisomes appears to be the main producers of H2O2, and that the acceleration of ethanol oxidation by lactate is completely dependent on catalase. In conclusion, the H2O2 necessary to boost the catalase-dependent oxidation of ethanol appears to come from cytoplasm and peroxisomes, and is produced by the enzyme lactate oxidase.


Assuntos
Etanol/metabolismo , Ácido Láctico/metabolismo , Fígado/metabolismo , Taxa de Depuração Metabólica/fisiologia , Animais , Etanol/farmacologia , Ácido Láctico/farmacologia , Fígado/efeitos dos fármacos , Masculino , Taxa de Depuração Metabólica/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Ratos , Ratos Wistar
6.
Biochem Pharmacol ; 137: 107-112, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28527616

RESUMO

Hepatic ethanol oxidation increases according to its concentration and is raised to near-saturation levels of alcohol dehydrogenase (ADH); therefore, re-oxidation of NADH becomes rate limiting in ethanol metabolism by the liver. Adenosine is able to increase liver ethanol oxidation in both in vivo and in vitro conditions; the enhancement being related with the capacity of the nucleoside to accelerate the transport of cytoplasmic reducing equivalents to mitochondria, by modifying the subcellular distribution of the malate-aspartate shuttle components. In the present study, we explored the putative effects of adenosine and other purines on liver ethanol oxidation mediated by non-ADH pathways. Using the model of high precision-cut rat liver slices, a pronounced increase of ethanol oxidation was found in liver slices incubated with various intermediates of the purine degradation pathway, from adenosine to uric acid (175-230%, over controls). Of these, urate had the strongest (230%), whereas xanthine had the less pronounced effect (178% over controls). The enhancement was not abolished by 4-methylpyrazole, indicating that the effect was independent of alcohol dehydrogenase. Conversely, aminotriazole, a catalase inhibitor, completely abolished the effect, pointing out that this enhanced ethanol oxidation is mediated by catalase activity. It is concluded that the H2O2 needed for catalase activity is derived from the oxidation of (hypo)xanthine by xanthine oxidase and the oxidation of urate by uricase. The present and previous data led us to propose that, depending on the metabolic conditions, adenosine might be able to stimulate the metabolism of ethanol through different pathways.


Assuntos
Catalase/metabolismo , Etanol/metabolismo , Fígado/metabolismo , Purinas/metabolismo , Animais , Masculino , Metabolismo/fisiologia , Técnicas de Cultura de Órgãos , Oxirredução , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...