Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(8)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37627845

RESUMO

The implementation of bioreactor systems for the production of bacterial inoculants as biofertilizers has become very important in recent decades. However, it is essential to know the bacterial growth optimal conditions to optimize the production and efficiency of bioinoculants. The aim of this work was to identify the best nutriment and mixing conditions to improve the specific cell growth rates (µ) of two PGPB (plant growth-promoting bacteria) rhizobial strains at the bioreactor level. For this purpose, the strains Sinorhizobium mexicanum ITTG-R7T and Sinorhizobium chiapanecum ITTG-S70T were previously reactivated in a PY-Ca2+ (peptone casein, yeast extract, and calcium) culture medium. Afterward, a master cell bank (MCB) was made in order to maintain the viability and quality of the strains. The kinetic characterization of each bacterial strain was carried out in s shaken flask. Then, the effect of the carbon and nitrogen sources and mechanical agitation was evaluated through a factorial design and response surface methodology (RSM) for cell growth optimization, where µ was considered a response variable. The efficiency of biomass production was determined in a homemade bioreactor, taking into account the optimal conditions obtained during the experiment conducted at the shaken flask stage. In order to evaluate the biological quality of the product obtained in the bioreactor, the bacterial strains were inoculated in common bean (Phaseolus vulgaris var. Jamapa) plants under bioclimatic chamber conditions. The maximum cell growth rate in both PGPB strains was obtained using a Y-Ca2+ (yeast extract and calcium) medium and stirred at 200 and 300 rpm. Under these growth conditions, the Sinorhizobium strains exhibited a high nitrogen-fixing capacity, which had a significant (p < 0.05) impact on the growth of the test plants. The bioreactor system was found to be an efficient alternative for the large-scale production of PGPB rhizobial bacteria, which are intended for use as biofertilizers in agriculture.

2.
J Fungi (Basel) ; 7(6)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198931

RESUMO

Wood-decay fungi are characterized by ligninolytic and hydrolytic enzymes that act through non-specific oxidation and hydrolytic reactions. The objective of this work was to evaluate the production of lignocellulolytic enzymes from collected fungi and to analyze their growth on lignocellulosic material. The study considered 18 species isolated from collections made in the state of Chiapas, Mexico, identified by taxonomic and molecular techniques, finding 11 different families. The growth rates of each isolate were obtained in culture media with African palm husk (PH), coffee husk (CH), pine sawdust (PS), and glucose as control, measuring daily growth with images analyzed in ImageJ software, finding the highest growth rate in the CH medium. The potency index (PI) of cellulase, xylanase, and manganese peroxidase (MnP) activities was determined, as well as the quantification of lignin peroxidase (LiP), with the strains Phlebiopsis flavidoalba TecNM-ITTG L20-19 and Phanerochaete sordida TecNM-ITTG L32-1-19 being the ones with the highest PI of hydrolase activities with 2.01 and 1.83 cellulase PI and 1.95 and 2.24 xylanase PI, respectively, while Phlebiopsis flavidoalba TecNM-ITTG L20-19 and Trametes sanguinea TecNM-ITTG L14-19 with 7115 U/L LiP activity had the highest oxidase activities, indicating their ability to oxidize complex molecules such as lignin.

3.
AMB Express ; 10(1): 124, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651884

RESUMO

Persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) are a group of high-risk synthetic substances for human and environmental health. Currently, the study of sites contaminated by the spillage of equipment PCBs containing have been considered targeted areas for the study of bacterial communities with potential for PCBs degradation. There in isolation of bacterial strains is vital for use in biodegradable processes, such as bacterial bioaugmentation, which accelerates the development of phenomena such as natural attenuation of contaminated sites. The objective of this study was to assess biodiversity of bacteria contained in anthropogenic contaminated soils (HS and HP) with PCBs compared to a control sample without contaminant and the modified forest (F) and agricultural (A) soil in the laboratory with 100 mg L-1 PCB. For the analysis of 16S rRNA genes amplified from DNA extracted from the soils evaluated, the latest generation of Illumina Miseq and Sanger sequencing for the cultivable strains were detected. The bacteria identified as the most abundant bacterial phyla for HS and HP soil was Proteobacteria (56.7%) and Firmicutes (22.9%), which decreased in F and A soils. The most abundant bacterial genera were Burkholderia, Bacillus, Acinetobacter, Comamonas and Cupriavidus. Several species identified in this study, such as Bacillus cereus, Burkholderia cepacia, Comamonas testosteroni and Acinetobacter pittii have been reported as PCBs degraders. Finally, by means of a principal component analysis (PCA), a correlation between the physical and chemical characteristics of the soils in relation to the relative abundances of the bacteria identified was obtained. The C/N ratio was directly related to the control soil (without contaminant), while SOM maintained a relationship with F and A soils and the bacterial abundances were directly related to Hs and Hp soils due to the presence of aroclor 1260. Bacteria with the ability to tolerate high concentrations of this pollutant are considered for future use in biostimulation and bioaugmentation processes in contaminated soils.

4.
Genome Announc ; 5(46)2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146860

RESUMO

We report here the complete genome sequence of Rhizobium sp. strain ACO-34A, isolated from Agave americana L. rhizosphere. No common nod genes were found, but there were nif genes for nitrogen fixing. A low average nucleotide identity to reported species supports its designation as a novel Rhizobium species that has a complete ribosomal operon in a plasmid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...