Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromolecules ; 57(7): 3013-3025, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38616814

RESUMO

This Perspective aims to present the current status and future opportunities for polymer science in battery technologies. Polymers play a crucial role in improving the performance of the ubiquitous lithium ion battery. But they will be even more important for the development of sustainable and versatile post-lithium battery technologies, in particular solid-state batteries. In this article, we identify the trends in the design and development of polymers for battery applications including binders for electrodes, porous separators, solid electrolytes, or redox-active electrode materials. These trends will be illustrated using a selection of recent polymer developments including new ionic polymers, biobased polymers, self-healing polymers, mixed-ionic electronic conducting polymers, inorganic-polymer composites, or redox polymers to give some examples. Finally, the future needs, opportunities, and directions of the field will be highlighted.

2.
ACS Polym Au ; 4(1): 77-85, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38371727

RESUMO

Solid polymer electrolytes that combine both a high lithium-ion transference number and mechanical properties at high temperatures are searched for improving the performance of batteries. Here, we show a salt-free all-polymer nanocomposite solid electrolyte for lithium metal batteries that improves the mechanical properties and shows a high lithium-ion transference number. For this purpose, lithium sulfonamide-functionalized poly(methyl methacrylate) nanoparticles (LiNPs) of very small size (20-30 nm) were mixed with poly(ethylene oxide) (PEO). The morphology of all-polymer nanocomposites was first investigated by transmission electron microscopy (TEM), showing a good distribution of nanoparticles (NPs) even at high contents (50 LiNP wt %). The crystallinity of PEO was investigated in detail and decreased with the increasing concentration of LiNPs. The highest ionic conductivity value for the PEO 50 wt % LiNP nanocomposite at 80 °C is 1.1 × 10-5 S cm-1, showing a lithium-ion transference number of 0.68. Using dynamic mechanic thermal analysis (DMTA), it was shown that LiNPs strengthen PEO, and a modulus of ≈108 Pa was obtained at 80 °C for the polymer nanocomposite. The nanocomposite solid electrolyte was stable with respect to lithium in a Li||Li symmetrical cell for 1000 h. In addition, in a full solid-state battery using LiFePO4 as the cathode and lithium metal as the anode, a specific capacity of 150 mAhg-1 with a current density of 0.05 mA cm-2 was achieved.

3.
J Mater Chem B ; 11(39): 9431-9442, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37655486

RESUMO

3D-printed cell models are currently in the spotlight of medical research. Whilst significant advances have been made, there are still aspects that require attention to achieve more realistic models which faithfully represent the in vivo environment. In this work we describe the production of an artery model with cyclic expansive properties, capable of mimicking the different physical forces and stress factors that cells experience in physiological conditions. The artery wall components are reproduced using 3D printing of thermoresponsive polymers with inorganic nanoparticles (NPs) representing the outer tunica adventitia, smooth muscle cells embedded in extracellular matrix representing the tunica media, and finally a monolayer of endothelial cells as the tunica intima. Cyclic expansion can be induced thanks to the inclusion of photo-responsive plasmonic NPs embedded within the thermoresponsive ink composition, resulting in changes in the thermoresponsive polymer hydration state and hence volume, in a stimulated on-off manner. By changing the thermoresponsive polymer composition, the transition temperature and pulsatility can be efficiently tuned. We show the direct effect of cyclic expansion and contraction on the overlying cell layers by analyzing transcriptional changes in mechanoresponsive mesenchymal genes associated with such microenvironmental physical cues. The technique described herein involving stimuli-responsive 3D printed tissue constructs, also described as four- dimensional (4D) printing, offers a novel approach for the production of dynamic biomodels.


Assuntos
Células Endoteliais , Nanopartículas , Polímeros/farmacologia , Matriz Extracelular , Artérias
4.
J Phys Chem B ; 122(4): 1537-1544, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29355016

RESUMO

Nanostructured block copolymer electrolytes have the potential to enable solid-state batteries with lithium metal anodes. We present complete continuum characterization of ion transport in a lamellar polystyrene-b-poly(ethylene oxide) copolymer/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte as a function of salt concentration. Electrochemical measurements are used to determine the Stefan-Maxwell salt diffusion coefficients [Formula: see text], [Formula: see text], and [Formula: see text]. Individual self-diffusion coefficients of the lithium- and TFSI-containing species were measured by pulsed-field gradient NMR (PFG-NMR). The NMR data indicate that salt diffusion is locally anisotropic, and this enables determination of a diffusion coefficient parallel to the lamellae, D∥, and a diffusion coefficient through defects in the lamellae, D⊥. We quantify anisotropic diffusion by defining an NMR morphology factor and demonstrate that it is correlated to defect density seen by transmission electron microscopy. We find agreement between the electrochemically determined Stefan-Maxwell diffusion coefficients and the diffusion coefficient D⊥ determined by PFG-NMR. Our work indicates that the performance of nanostructured block copolymer electrolytes in batteries is strongly influenced by ion transport through defects.

5.
ACS Macro Lett ; 7(9): 1056-1061, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-35632948

RESUMO

Nanostructured solid electrolytes containing ion-conducting domains and rigid nonconducting domains are obtained by block copolymer self-assembly. Here, we report on the synthesis and characteristics of mixtures of a hybrid diblock copolymer with an organic and inorganic block: poly(ethylene oxide)-b-poly(acryloisobutyl polyhedral oligomeric silsesquioxane) (PEO-POSS) and a lithium salt. In the neat state, PEO-POSS exhibits a classical order-to-disorder transition upon heating. Dilute electrolytes exhibit a dramatic reversal; a disorder-to-order transition upon heating is obtained, indicating that the addition of salt fundamentally changes interactions between the organic and inorganic chains. At higher salt concentrations, the electrolytes primarily form a lamellar phase. Coexisting lamellae and cylinders are found at intermediate salt concentrations and high temperatures. The conductivity and shear modulus of PEO-POSS are significantly higher than that of an all-organic block copolymer electrolyte with similar molecular weight and morphology, demonstrating that organic-inorganic block copolymers provide a promising route for developing the next generation of solid electrolytes for lithium batteries.

6.
Nano Lett ; 17(4): 2517-2523, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28290694

RESUMO

Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ∼30° below the expected freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.

7.
Proc Natl Acad Sci U S A ; 113(1): 52-7, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26699512

RESUMO

Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. We have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10(-4) S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Li(+)/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries.

8.
Sci Technol Adv Mater ; 14(2): 023001, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877568

RESUMO

This review describes recent efforts on the synthesis, dispersion and surface functionalization of the three dominating oxide nanoparticles used for photocatalytic, UV-blocking and sunscreen applications: titania, zinc oxide, and ceria. The gas phase and liquid phase synthesis is described briefly and examples are given of how weakly aggregated photocatalytic or UV-absorbing oxide nanoparticles with different composition, morphology and size can be generated. The principles of deagglomeration are reviewed and the specific challenges for nanoparticles highlighted. The stabilization of oxide nanoparticles in both aqueous and non-aqueous media requires a good understanding of the magnitude of the interparticle forces and the surface chemistry of the materials. Quantitative estimates of the Hamaker constants in various media and measurements of the isoelectric points for the different oxide nanoparticles are presented together with an overview of different additives used to prepare stable dispersions. The structural and chemical requirements and the various routes to produce transparent photocatalytic and nanoparticle-based UV-protecting coatings, and UV-blocking sunscreens are described and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...