Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biomedicines ; 11(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38001944

RESUMO

Non-syndromic hearing impairment (NSHI) is a very heterogeneous genetic condition, involving over 130 genes. Mutations in GJB2, encoding connexin-26, are a major cause of NSHI (the DFNB1 type), but few other genes have significant epidemiological contributions. Mutations in the STRC gene result in the DFNB16 type of autosomal recessive NSHI, a common cause of moderate hearing loss. STRC is located in a tandem duplicated region that includes the STRCP1 pseudogene, and so it is prone to rearrangements causing structural variations. Firstly, we screened a cohort of 122 Spanish familial cases of non-DFNB1 NSHI with at least two affected siblings and unaffected parents, and with different degrees of hearing loss (mild to profound). Secondly, we screened a cohort of 64 Spanish sporadic non-DFNB1 cases, and a cohort of 35 Argentinean non-DFNB1 cases, all of them with moderate hearing loss. Amplification of marker D15S784, massively parallel DNA sequencing, multiplex ligation-dependent probe amplification and long-range gene-specific PCR followed by Sanger sequencing were used to search and confirm single-nucleotide variants (SNVs) and deletions involving STRC. Causative variants were found in 13 Spanish familial cases (10.7%), 5 Spanish simplex cases (7.8%) and 2 Argentinean cases (5.7%). In all, 34 deleted alleles and 6 SNVs, 5 of which are novel. All affected subjects had moderate hearing impairment. Our results further support this strong genotype-phenotype correlation and highlight the significant contribution of STRC mutations to moderate NSHI in the Spanish population.

2.
Genes (Basel) ; 13(1)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35052489

RESUMO

Pathogenic variants in the PJVK gene cause the DFNB59 type of autosomal recessive non-syndromic hearing impairment (AR-NSHI). Phenotypes are not homogeneous, as a few subjects show auditory neuropathy spectrum disorder (ANSD), while others show cochlear hearing loss. The numbers of reported cases and pathogenic variants are still small to establish accurate genotype-phenotype correlations. We investigated a cohort of 77 Spanish familial cases of AR-NSHI, in whom DFNB1 had been excluded, and a cohort of 84 simplex cases with isolated ANSD in whom OTOF variants had been excluded. All seven exons and exon-intron boundaries of the PJVK gene were sequenced. We report three novel DFNB59 cases, one from the AR-NSHI cohort and two from the ANSD cohort, with stable, severe to profound NSHI. Two of the subjects received unilateral cochlear implantation, with apparent good outcomes. Our study expands the spectrum of PJVK mutations, as we report four novel pathogenic variants: p.Leu224Arg, p.His294Ilefs*43, p.His294Asp and p.Phe317Serfs*20. We review the reported cases of DFNB59, summarize the clinical features of this rare subtype of AR-NSHI and discuss the involvement of PJVK in ANSD.


Assuntos
Perda Auditiva Central/patologia , Perda Auditiva/patologia , Mutação , Proteínas do Tecido Nervoso/genética , Adolescente , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Perda Auditiva/complicações , Perda Auditiva/genética , Perda Auditiva Central/complicações , Perda Auditiva Central/genética , Humanos , Lactente , Masculino , Linhagem
3.
Genes (Basel) ; 12(3)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809266

RESUMO

Nonsyndromic hereditary hearing loss is a common sensory defect in humans that is clinically and genetically highly heterogeneous. So far, 122 genes have been associated with this disorder and 50 of them have been linked to autosomal dominant (DFNA) forms like DFNA68, a rare subtype of hearing impairment caused by disruption of a stereociliary scaffolding protein (HOMER2) that is essential for normal hearing in humans and mice. In this study, we report a novel HOMER2 variant (c.832_836delCCTCA) identified in a Spanish family by using a custom NGS targeted gene panel (OTO-NGS-v2). This frameshift mutation produces a premature stop codon that may lead in the absence of NMD to a shorter variant (p.Pro278Alafs*10) that truncates HOMER2 at the CDC42 binding domain (CBD) of the coiled-coil structure, a region that is essential for protein multimerization and HOMER2-CDC42 interaction. c.832_836delCCTCA mutation is placed close to the previously identified c.840_840dup mutation found in a Chinese family that truncates the protein (p.Met281Hisfs*9) at the CBD. Functional assessment of the Chinese mutant revealed decreased protein stability, reduced ability to multimerize, and altered distribution pattern in transfected cells when compared with wild-type HOMER2. Interestingly, the Spanish and Chinese frameshift mutations might exert a similar effect at the protein level, leading to truncated mutants with the same Ct aberrant protein tail, thus suggesting that they can share a common mechanism of pathogenesis. Indeed, age-matched patients in both families display quite similar hearing loss phenotypes consisting of early-onset, moderate-to-profound progressive hearing loss. In summary, we have identified the third variant in HOMER2, which is the first one identified in the Spanish population, thus contributing to expanding the mutational spectrum of this gene in other populations, and also to clarifying the genotype-phenotype correlations of DFNA68 hearing loss.


Assuntos
Mutação da Fase de Leitura , Perda Auditiva Neurossensorial , Proteínas de Arcabouço Homer , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Códon sem Sentido/genética , Mutação da Fase de Leitura/genética , Genes Dominantes/genética , Perda Auditiva Neurossensorial/genética , Proteínas de Arcabouço Homer/genética , Linhagem , Fenótipo
4.
Sci Rep ; 10(1): 6213, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32277154

RESUMO

The mutational spectrum of many genes and their contribution to the global prevalence of hereditary hearing loss is still widely unknown. In this study, we have performed the mutational screening of EYA4 gene by DHLPC and NGS in a large cohort of 531 unrelated Spanish probands and one Australian family with autosomal dominant non-syndromic hearing loss (ADNSHL). In total, 9 novel EYA4 variants have been identified, 3 in the EYA4 variable region (c.160G > T; p.Glu54*, c.781del; p.Thr261Argfs*34 and c.1078C > A; p.Pro360Thr) and 6 in the EYA-HR domain (c.1107G > T; p.Glu369Asp, c.1122G > T; p.Trp374Cys, c.1281G > A; p.Glu427Glu, c.1282-1G > A, c.1601C > G; p.S534* and an heterozygous copy number loss encompassing exons 15 to 17). The contribution of EYA4 mutations to ADNSHL in Spain is, therefore, very limited (~1.5%, 8/531). The pathophysiology of some of these novel variants has been explored. Transient expression of the c-myc-tagged EYA4 mutants in mammalian COS7 cells revealed absence of expression of the p.S534* mutant, consistent with a model of haploinsufficiency reported for all previously described EYA4 truncating mutations. However, normal expression pattern and translocation to the nucleus were observed for the p.Glu369Asp mutant in presence of SIX1. Complementary in silico analysis suggested that c.1107G > T (p.Glu369Asp), c.1281G > A (p.Glu427Glu) and c.1282-1G > A variants alter normal splicing. Minigene assays in NIH3T3 cells further confirmed that all 3 variants caused exon skipping resulting in frameshifts that lead to premature stop codons. Our study reports the first likely pathogenic synonymous variant linked to DFNA10 and provide further evidence for haploinsufficiency as the common underlying disease-causing mechanism for DFNA10-related hearing loss.


Assuntos
Perda Auditiva Neurossensorial/genética , Mutação , Transativadores/genética , Animais , Células COS , Chlorocebus aethiops , Códon sem Sentido , Variações do Número de Cópias de DNA , Feminino , Mutação da Fase de Leitura , Perda Auditiva Neurossensorial/epidemiologia , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto , Linhagem , Mutação Silenciosa , Espanha/epidemiologia
5.
J Transl Med ; 17(1): 290, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31455392

RESUMO

BACKGROUND: Perrault syndrome is a rare autosomal recessive disorder that is characterized by the association of sensorineural hearing impairment and ovarian dysgenesis in females, whereas males have only hearing impairment. In some cases, patients present with a diversity of neurological signs. To date, mutations in six genes are known to cause Perrault syndrome, but they do not explain all clinically-diagnosed cases. In addition, the number of reported cases and the spectra of mutations are still small to establish conclusive genotype-phenotype correlations. METHODS: Affected siblings from family SH19, who presented with features that were suggestive of Perrault syndrome, were subjected to audiological, neurological and gynecological examination. The genetic study included genotyping and haplotype analysis for microsatellite markers close to the genes involved in Perrault syndrome, whole-exome sequencing, and Sanger sequencing of the coding region of the TWNK gene. RESULTS: Three siblings from family SH19 shared similar clinical features: childhood-onset bilateral sensorineural hearing impairment, which progressed to profound deafness in the second decade of life; neurological signs (spinocerebellar ataxia, polyneuropathy), with onset in the fourth decade of life in the two females and at age 20 years in the male; gonadal dysfunction with early cessation of menses in the two females. The genetic study revealed two compound heterozygous pathogenic mutations in the TWNK gene in the three affected subjects: c.85C>T (p.Arg29*), previously reported in a case of hepatocerebral syndrome; and a novel missense mutation, c.1886C>T (p.Ser629Phe). Mutations segregated in the family according to an autosomal recessive inheritance pattern. CONCLUSIONS: Our results further illustrate the utility of genetic testing as a tool to confirm a tentative clinical diagnosis of Perrault syndrome. Studies on genotype-phenotype correlation from the hitherto reported cases indicate that patients with Perrault syndrome caused by TWNK mutations will manifest neurological signs in adulthood. Molecular and clinical characterization of novel cases of recessive disorders caused by TWNK mutations is strongly needed to get further insight into the genotype-phenotype correlations of a phenotypic continuum encompassing Perrault syndrome, infantile-onset spinocerebellar ataxia, and hepatocerebral syndrome.


Assuntos
DNA Helicases/genética , Genes Recessivos , Disgenesia Gonadal 46 XX/complicações , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/complicações , Perda Auditiva Neurossensorial/genética , Proteínas Mitocondriais/genética , Mutação/genética , Doenças do Sistema Nervoso/complicações , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Pré-Escolar , DNA Helicases/química , Éxons/genética , Feminino , Disgenesia Gonadal 46 XX/diagnóstico por imagem , Perda Auditiva Neurossensorial/diagnóstico por imagem , Heterozigoto , Humanos , Íntrons/genética , Imageamento por Ressonância Magnética , Masculino , Repetições de Microssatélites/genética , Proteínas Mitocondriais/química , Linhagem , Adulto Jovem
6.
Front Genet ; 9: 479, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386378

RESUMO

Mutations in PAX6 are involved in several developmental eye disorders. These disorders have considerable phenotypic variability, ranging from panocular forms of congenital aniridia and microphthalmia to isolated anomalies of the anterior or posterior segment. Here, we describe 3 families with variable inter-generational ocular expression of aniridia, iris coloboma, or microphthalmia, and an unusual transmission of PAX6 mutations from an unaffected or mildly affected parent; all of which raised suspicion of gonosomal mosaicism. We first identified two previously known nonsense mutations and one novel likely pathogenic missense variant in PAX6 in probands by means of targeted NGS. The subsequent segregation analysis by Sanger sequencing evidenced the presence of highly probable mosaic events in paternal blood samples. Mosaicism was further confirmed by droplet digital PCR analysis in several somatic tissues of mosaic fathers. Quantification of the mutant allele fraction in parental samples showed a marked deviation from 50%, with a range between 12 and 29% depending on cell type. Gonosomal mosaicsm was definitively confirmed in one of the families thanks to the availability of a sperm sample from the mosaic father. Thus, the recurrence risk in this family was estimated to be about one-third. This is the first report confirming parental PAX6 mosaicism as a cause of disease recurrence in aniridia and other related phenotypes. In addition, we demonstrated that post-zygotic mosaicism is a frequent and underestimated pathogenic mechanism in aniridia, explaining intra-familial phenotypic variability in many cases. Our findings may have substantial implications for genetic counseling in congenital aniridia. Thus, we also highlight the importance of comprehensive genetic screening of parents for new sporadic cases with aniridia or related developmental eye disease to more accurately assess recurrence risk. In conclusion, somatic and/or gonosomal mosaicism should be taken into consideration as a genetic factor to explain not only families with unaffected parents despite multiple affected children but also variable expressivity, apparent de novo cases, and even uncharacterized cases of aniridia and related developmental eye disorders, apparently lacking PAX6 mutations.

7.
Pediatr Res ; 78(1): 97-102, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25785835

RESUMO

BACKGROUND: PRPS1 encodes isoform I of phosphoribosylpyrophosphate synthetase (PRS-I), a key enzyme in nucleotide biosynthesis. Different missense mutations in PRPS1 cause a variety of disorders that include PRS-I superactivity, nonsyndromic sensorineural hearing impairment, Charcot-Marie-Tooth disease, and Arts syndrome. It has been proposed that each mutation would result in a specific phenotype, depending on its effects on the structure and function of the enzyme. METHODS: Thirteen Spanish unrelated families segregating X-linked hearing impairment were screened for PRPS1 mutations by Sanger sequencing. In two positive pedigrees, segregation of mutations was studied, and clinical data from affected subjects were compared. RESULTS: We report two novel missense mutations in PRPS1, p.Ile275Thr and p.Gly306Glu, which were found in the propositi of two unrelated Spanish families, both subjects presenting with nonsyndromic hearing impairment. Further investigation revealed syndromic features in other hemizygous carriers from one of the pedigrees. Sequencing of genes that are functionally related to PRPS1 did not reveal any candidate variant that might act as a phenotype modifier. CONCLUSION: This case of intrafamilial phenotypic variation associated with a single PRPS1 mutation complicates the genotype-phenotype correlations, which makes genetic counseling of mutation carriers difficult because of the wide spectrum of severity of the associated disorders.


Assuntos
Aconselhamento Genético , Perda Auditiva/genética , Mutação , Ribose-Fosfato Pirofosfoquinase/genética , Adolescente , Adulto , Sequência de Aminoácidos , Cromossomos Humanos X , Surdez/genética , Saúde da Família , Feminino , Estudos de Associação Genética , Testes Genéticos , Hemizigoto , Heterozigoto , Humanos , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Homologia de Sequência de Aminoácidos , Espanha
8.
PLoS One ; 8(9): e73566, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039984

RESUMO

The DFNB1 subtype of autosomal recessive, nonsyndromic hearing impairment, caused by mutations affecting the GJB2 (connexin-26) [corrected] gene, is highly prevalent in most populations worldwide. DFNB1 hearing impairment is mostly severe or profound and usually appears before the acquisition of speech (prelingual onset), though a small number of hypomorphic missense mutations result in mild or moderate deafness of postlingual onset. We identified a novel GJB2 splice-site mutation, c. -22-2A>C, in three siblings with mild postlingual hearing impairment that were compound heterozygous for c. -22-2A>C and c.35delG. Reverse transcriptase-PCR experiments performed on total RNA extracted from saliva samples from one of these siblings confirmed that c. -22-2A>C abolished the acceptor splice site of the single GJB2 intron, resulting in the absence of normally processed transcripts from this allele. However, we did isolate transcripts from the c. -22-2A>C allele that keep an intact GJB2 coding region and that were generated by use of an alternative acceptor splice site previously unknown. The residual expression of wild-type connexin-26 [corrected] encoded by these transcripts probably underlies the mild severity and late onset of the hearing impairment of these subjects.


Assuntos
Conexinas/genética , Perda Auditiva/genética , Sequência de Bases , Conexina 26 , Feminino , Genótipo , Heterozigoto , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Isoformas de Proteínas/genética
9.
Am J Hum Genet ; 91(5): 883-9, 2012 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-23122587

RESUMO

Already 40 genes have been identified for autosomal-recessive nonsyndromic hearing impairment (arNSHI); however, many more genes are still to be identified. In a Dutch family segregating arNSHI, homozygosity mapping revealed a 2.4 Mb homozygous region on chromosome 11 in p15.1-15.2, which partially overlapped with the previously described DFNB18 locus. However, no putative pathogenic variants were found in USH1C, the gene mutated in DFNB18 hearing impairment. The homozygous region contained 12 additional annotated genes including OTOG, the gene encoding otogelin, a component of the tectorial membrane. It is thought that otogelin contributes to the stability and strength of this membrane through interaction or stabilization of its constituent fibers. The murine orthologous gene was already known to cause hearing loss when defective. Analysis of OTOG in the Dutch family revealed a homozygous 1 bp deletion, c.5508delC, which leads to a shift in the reading frame and a premature stop codon, p.Ala1838ProfsX31. Further screening of 60 unrelated probands from Spanish arNSHI families detected compound heterozygous OTOG mutations in one family, c.6347C>T (p.Pro2116Leu) and c. 6559C>T (p.Arg2187X). The missense mutation p.Pro2116Leu affects a highly conserved residue in the fourth von Willebrand factor type D domain of otogelin. The subjects with OTOG mutations have a moderate hearing impairment, which can be associated with vestibular dysfunction. The flat to shallow "U" or slightly downsloping shaped audiograms closely resembled audiograms of individuals with recessive mutations in the gene encoding α-tectorin, another component of the tectorial membrane. This distinctive phenotype may represent a clue to orientate the molecular diagnosis.


Assuntos
Genes Recessivos , Perda Auditiva Neurossensorial/genética , Glicoproteínas de Membrana/genética , Mutação , Homozigoto , Humanos , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Irmãos
10.
Genet Test Mol Biomarkers ; 14(2): 183-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20073550

RESUMO

One specific mutation of the GJB2 gene that encodes the connexin 26 protein, the 35delG mutation, has become a major interest among scientists who focus on the genetics of nonsyndromic hearing loss. The mutation accounts for the majority of GJB2 mutations detected in Caucasian populations and represents one of the most frequent disease mutations identified so far. The debate was so far between the arguments whether or not the 35delG mutation constitutes a mutational hot-spot or a founder effect; however, it was recently clarified that the latter seems the most likely. In an attempt to explore the origin and propagation of the 35delG mutation, several groups have reported the prevalence of the mutation and the carrier rates in different populations worldwide. It is now certain that the theory of a common founder prevails and that the highest carrier frequencies of the 35delG mutation are observed in southern European populations, giving rise to a discussion regarding the origin of the 35delG mutation. In this study, we discuss data previously published by our and other groups and also compare the haplotype distribution of the mutation in southern Europe, trying to understand the pathways of science and history and the conflict between them.


Assuntos
Conexinas/história , Efeito Fundador , Deleção de Sequência , Conexina 26 , Conexinas/genética , Frequência do Gene , Genes Recessivos , Grécia Antiga , Perda Auditiva/genética , Heterozigoto , História Antiga , Humanos , Espanha , População Branca/genética
12.
Neuromuscul Disord ; 18(12): 979-81, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18952432

RESUMO

Mohr-Tranebjaerg syndrome is a rare X-linked condition characterized by the association of dystonia and progressive postlingual sensorineural hearing impairment. Here we report the clinical and genetic findings in a Spanish patient with MTS carrying a novel mutation in the DDP1 (deafness-dystonia peptide 1) gene, which encodes TIMM8a, a component of the mitochondrial protein translocation system. The phenotypic variability observed in patients with Mohr-Tranebjaerg syndrome suggests the involvement of modifier factors which may modulate the clinical manifestations of the syndrome.


Assuntos
Surdez/genética , Distonia/genética , Proteínas de Membrana Transportadoras/genética , Mutação , Análise Mutacional de DNA , Surdez/complicações , Distonia/complicações , Humanos , Masculino , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Linhagem , Reação em Cadeia da Polimerase , Espanha , Síndrome , Adulto Jovem
13.
Hum Mutat ; 29(6): 823-31, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18381613

RESUMO

Autosomal recessive nonsyndromic hearing impairment (NSHI) is a heterogeneous condition, for which 53 genetic loci have been reported, and 29 genes have been identified to date. One of these, OTOF, encodes otoferlin, a membrane-anchored calcium-binding protein that plays a role in the exocytosis of synaptic vesicles at the auditory inner hair cell ribbon synapse. We have investigated the prevalence and spectrum of deafness-causing mutations in the OTOF gene. Cohorts of 708 Spanish, 83 Colombian, and 30 Argentinean unrelated subjects with autosomal recessive NSHI were screened for the common p.Gln829X mutation. In compound heterozygotes, the second mutant allele was identified by DNA sequencing. In total, 23 Spanish, two Colombian and two Argentinean subjects were shown to carry two mutant alleles of OTOF. Of these, one Colombian and 13 Spanish subjects presented with auditory neuropathy. In addition, a cohort of 20 unrelated subjects with a diagnosis of auditory neuropathy, from several countries, was screened for mutations in OTOF by DNA sequencing. A total of 11 of these subjects were shown to carry two mutant alleles of OTOF. In total, 18 pathogenic and four neutral novel alleles of the OTOF gene were identified. Haplotype analysis for markers close to OTOF suggests a common founder for the novel c.2905_2923delinsCTCCGAGCGCA mutation, frequently found in Argentina. Our results confirm that mutation of the OTOF gene correlates with a phenotype of prelingual, profound NSHI, and indicate that OTOF mutations are a major cause of inherited auditory neuropathy.


Assuntos
Perda Auditiva Neurossensorial/genética , Proteínas de Membrana/genética , Argentina , Colômbia , Feminino , Genes Recessivos , Humanos , Masculino , Mutação , Espanha
15.
Eur J Hum Genet ; 16(8): 888-96, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18285825

RESUMO

Pendred syndrome (PS) and DFNB4, a non-syndromic sensorineural hearing loss with enlargement of the vestibular aqueduct (EVA), are caused by mutations in the SLC26A4 gene. Both disorders are recessive, and yet only one mutated SLC26A4 allele, or no mutations, are identified in many cases. Here we present the genetic characterization of 105 Spanish patients from 47 families with PS or non-syndromic EVA and 20 families with recessive non-syndromic hearing loss, which segregated with the DFNB4 locus. In this cohort, two causative SLC26A4 mutations could be characterized in 18 families (27%), whereas a single mutated allele was found in a patient with unilateral hearing loss and EVA in the same ear. In all, 24 different causative mutations were identified, including eight novel mutations. The novel p.Q514K variant was the most prevalent mutation in SLC26A4, accounting for 17% (6/36) of the mutated alleles identified in this study, deriving from a founder effect. We also characterized a novel multiexon 14 kb deletion spanning from intron 3 to intron 6 (g.8091T_22145Cdel). This study also revealed the first case of a de novo recessive mutation p.Q413P causing PS that arose in the proband's paternal allele, the maternal one carrying the p.L445W. The relevance of our results for genetic diagnosis of PS and non-syndromic EVA hearing loss is discussed.


Assuntos
Perda Auditiva Neurossensorial/genética , Proteínas de Membrana Transportadoras/genética , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Aqueduto Vestibular/patologia , Família , Feminino , Humanos , Masculino , Linhagem , Transportadores de Sulfato , Síndrome
18.
Am J Med Genet A ; 137A(3): 255-8, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16088916

RESUMO

Molecular testing for mutations in the gene encoding connexin-26 (GJB2) at the DFNB1 locus has become the standard of care for genetic diagnosis and counseling of autosomal recessive non-syndromic hearing impairment (ARNSHI). The spectrum of mutations in GJB2 varies considerably among the populations, different alleles predominating in different ethnic groups. A cohort of 34 families of Spanish Romani (gypsies) with ARNSHI was screened for mutations in GJB2. We found that DFNB1 deafness accounts for 50% of all ARNSHI in Spanish gypsies. The predominating allele is W24X (79% of the DFNB1 alleles), and 35delG is the second most common allele (17%). An allele-specific PCR test was developed for the detection of the W24X mutation. By using this test, carrier frequencies were determined in two sample groups of gypsies from different Spanish regions (Andalusia and Catalonia), being 4% and 0%, respectively. Haplotype analysis for microsatellite markers closely flanking the GJB2 gene revealed five different haplotypes associated with the W24X mutation, all sharing the same allele from marker D13S141, suggesting that a founder effect for this mutation is responsible for its high prevalence among Spanish gypsies.


Assuntos
Conexinas/genética , Genes Recessivos/genética , Perda Auditiva/genética , Mutação , Roma (Grupo Étnico)/genética , Cromossomos Humanos Par 13/genética , Códon sem Sentido , Conexina 26 , Saúde da Família , Feminino , Frequência do Gene , Genótipo , Haplótipos , Perda Auditiva/etnologia , Perda Auditiva/patologia , Humanos , Masculino , Repetições de Microssatélites , Prevalência , Espanha/epidemiologia , Síndrome
19.
Am J Hum Genet ; 73(6): 1452-8, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14571368

RESUMO

Mutations in GJB2, the gene encoding connexin-26 at the DFNB1 locus on 13q12, are found in as many as 50% of subjects with autosomal recessive, nonsyndromic prelingual hearing impairment. However, genetic diagnosis is complicated by the fact that 10%-50% of affected subjects with GJB2 mutations carry only one mutant allele. Recently, a deletion truncating the GJB6 gene (encoding connexin-30), near GJB2 on 13q12, was shown to be the accompanying mutation in approximately 50% of these deaf GJB2 heterozygotes in a cohort of Spanish patients, thus becoming second only to 35delG at GJB2 as the most frequent mutation causing prelingual hearing impairment in Spain. Here, we present data from a multicenter study in nine countries that shows that the deletion is present in most of the screened populations, with higher frequencies in France, Spain, and Israel, where the percentages of unexplained GJB2 heterozygotes fell to 16.0%-20.9% after screening for the del(GJB6-D13S1830) mutation. Our results also suggest that additional mutations remain to be identified, either in DFNB1 or in other unlinked genes involved in epistatic interactions with GJB2. Analysis of haplotypes associated with the deletion revealed a founder effect in Ashkenazi Jews and also suggested a common founder for countries in Western Europe. These results have important implications for the diagnosis and counseling of families with DFNB1 deafness.


Assuntos
Conexinas/genética , Evolução Molecular , Perda Auditiva/genética , Conexina 26 , Primers do DNA , Europa (Continente) , Efeito Fundador , Frequência do Gene , Testes Genéticos , Haplótipos/genética , Humanos , Israel , Judeus/genética , Repetições de Microssatélites/genética , Mutação/genética , Estados Unidos
20.
Rev. cuba. pediatr ; 75(1)ene.-mar. 2003. tab
Artigo em Espanhol | CUMED | ID: cum-22875

RESUMO

Para valorar la frecuencia de la sordera neurosensorial, bilateral, prelocutiva, severo-profunda, causada por mutaciones en el gen C´26 en el medio, se estudiaron a 35 pacientes procedentes de sorderas familiares y esporádicas. Se buscaron mutaciones en el gen de la conexina 26 (C´26) en un individuo afectado de cada familia y en todos los casos esporádicos o de causa no precesada (ENP). Se encontraron los 2 alelos mutados del gen en el 53,3 por ciento (8/15) de las familias autosómicas recesivas y en el 40 por ciento (6/15) de los pacientes ENP. El 65 por ciento del total de alelos mutados presentaron la mutación 35delG. No se hallaron mutaciones en los individuos procedentes de las familias autosómicas dominantes. En esta casuística las mutaciones en el gen de la C´26 fueron responsables del 40 por ciento (14/35) de los casos no relacionados con sordera neurosensorial no sindrómica severo-profunda(AU)


Assuntos
Perda Auditiva Neurossensorial/genética , Conexinas/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...