Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 12: 722528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707507

RESUMO

Little is known about the effects of training load on exercise-induced plasma increase of interleukin-6 (IL-6) and soluble IL-6 receptor (sIL-6R) and their relationship with vascular remodeling. We sought to evaluate the role of sIL 6R as a regulator of IL-6-induced vascular remodeling. Forty-four male marathon runners were recruited and allocated into two groups: low-training (LT, <100 km/week) and high-training (HT, ≥100 km/week), 22 athletes per group. Twenty-one sedentary participants were used as reference. IL-6, sIL-6R and sgp130 levels were measured in plasma samples obtained before and immediately after finishing a marathon (42.2-km). Aortic diameter was measured by echocardiography. The inhibitory effect of sIL-6R on IL-6-induced VSMC migration was assessed using cultured A7r5 VSMCs. Basal plasma IL-6 and sIL-6R levels were similar among sedentary and athlete groups. Plasma IL-6 and sIL-6R levels were elevated after the marathon, and HT athletes had higher post-race plasma sIL-6R, but not IL-6, level than LT athletes. No changes in sgp130 plasma levels were found in LT and HT groups before and after running the marathon. Athletes had a more dilated ascending aorta and aortic root than sedentary participants with no differences between HT and LT athletes. However, a positive correlation between ascending aorta diameter and plasma IL-6 levels corrected by training load and years of training was observed. IL-6 could be responsible for aorta dilation because IL-6 stimulated VSMC migration in vitro, an effect that is inhibited by sIL-6R. However, IL-6 did not modify cell proliferation, collagen type I and contractile protein of VSMC. Our results suggest that exercise induces vascular remodeling. A possible association with IL-6 is proposed. Because sIL-6R inhibits IL-6-induced VSMC migration, a possible mechanism to regulate IL-6-dependent VSMC migration is also proposed.

2.
Front Mol Biosci ; 8: 641734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33786327

RESUMO

IL-6 is usually described as a pleiotropic cytokine produced in response to tissue injury or infection. As a pro-inflammatory cytokine, IL-6 activates innate and adaptative immune responses. IL-6 is released in the innate immune response by leukocytes as well as stromal cells upon pattern recognition receptor activation. IL-6 then recruits immune cells and triggers B and T cell response. Dysregulated IL-6 activity is associated with pathologies involving chronic inflammation and autoimmunity, including atherosclerosis. However, IL-6 is also produced and released under beneficial conditions, such as exercise, where IL-6 is associated with the anti-inflammatory and metabolic effects coupled with physical adaptation to intense training. Exercise-associated IL-6 acts on adipose tissue to induce lipogenesis and on arteries to induce adaptative vascular remodeling. These divergent actions could be explained by complex signaling networks. Classical IL-6 signaling involves a membrane-bound IL-6 receptor and glycoprotein 130 (gp130), while trans-signaling relies on a soluble version of IL-6R (sIL-6R) and membrane-bound gp130. Trans-signaling, but not the classical pathway, is regulated by soluble gp130. In this review, we discuss the similarities and differences in IL-6 cytokine and myokine signaling to explain the differential and opposite effects of this protein during inflammation and exercise, with a special focus on the vascular system.

3.
Biochem Pharmacol ; 180: 114190, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32768401

RESUMO

The renin-angiotensin system, one of the main regulators of vascular function, controls vasoconstriction, inflammation and vascular remodeling. Antagonistic actions of the counter-regulatory renin-angiotensin system, which include vasodilation, anti-proliferative, anti-inflammatory and anti-remodeling effects, have also been described. However, little is known about the direct effects of angiotensin-(1-9), a peptide of the counter-regulatory renin-angiotensin system, on vascular smooth muscle cells. Here, we studied the anti-vascular remodeling effects of angiotensin-(1-9), with special focus on the control of vascular smooth muscle cell phenotype. Angiotensin-(1-9) decreased blood pressure and aorta media thickness in spontaneously hypertensive rats. Reduction of media thickness was associated with decreased vascular smooth muscle cell proliferation. In the A7r5 VSMC cell line and in primary cultures of rat aorta smooth muscle cells, angiotensin-(1-9) did not modify basal proliferation. However, angiotensin-(1-9) inhibited proliferation, migration and contractile protein decrease induced by platelet derived growth factor-BB. Moreover, angiotensin-(1-9) reduced Akt and FoxO1 phosphorylation at 30 min, followed by an increase of total FoxO1 protein content. Angiotensin-(1-9) effects were blocked by the AT2R antagonist PD123319, Akt-Myr overexpression and FoxO1 siRNA. These data suggest that angiotensin-(1-9) inhibits vascular smooth muscle cell dedifferentiation by an AT2R/Akt/FoxO1-dependent mechanism.


Assuntos
Angiotensina I/farmacologia , Anti-Hipertensivos/farmacologia , Desdiferenciação Celular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Remodelação Vascular/efeitos dos fármacos , Angiotensina I/uso terapêutico , Animais , Anti-Hipertensivos/uso terapêutico , Desdiferenciação Celular/fisiologia , Linhagem Celular , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Remodelação Vascular/fisiologia
4.
Front Pharmacol ; 9: 1553, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30804791

RESUMO

Hypertension is a disease associated to increased plasma levels of angiotensin II (Ang II). Ang II can regulate proliferation, migration, ROS production and hypertrophy of vascular smooth muscle cells (VSMCs). However, the mechanisms by which Ang II can affect VSMCs remain to be fully elucidated. In this context, autophagy, a process involved in self-digestion of proteins and organelles, has been described to regulate vascular remodeling. Therefore, we sought to investigate if Ang II regulates VSMC hypertrophy through an autophagy-dependent mechanism. To test this, we stimulated A7r5 cell line and primary rat aortic smooth muscle cells with Ang II 100 nM and measured autophagic markers at 24 h by Western blot. Autophagosomes were quantified by visualizing fluorescently labeled LC3 using confocal microscopy. The results showed that treatment with Ang II increases Beclin-1, Vps34, Atg-12-Atg5, Atg4 and Atg7 protein levels, Beclin-1 phosphorylation, as well as the number of autophagic vesicles, suggesting that this peptide induces autophagy by activating phagophore initiation and elongation. These findings were confirmed by the assessment of autophagic flux by co-administering Ang II together with chloroquine (30 µM). Pharmacological antagonism of the angiotensin type 1 receptor (AT1R) with losartan and RhoA/Rho Kinase inhibition prevented Ang II-induced autophagy. Moreover, Ang II-induced A7r5 hypertrophy, evaluated by α-SMA expression and cell size, was prevented upon autophagy inhibition. Taking together, our results suggest that the induction of autophagy by an AT1R/RhoA/Rho Kinase-dependent mechanism contributes to Ang II-induced hypertrophy in VSMC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...