Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Haematol ; 204(1): 56-67, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38083878

RESUMO

Cyclic thrombocytopenia (CTP) is characterized by periodic platelet oscillation with substantial amplitude. Most CTP cases have a thrombocytopenic background and are often misdiagnosed as immune thrombocytopenia with erratically effective treatment choices. CTP also occurs during hydroxyurea treatment in patients with myeloproliferative diseases. While the aetiology of CTP remains uncertain, here we evaluate historical, theoretical and clinical findings to provide a framework for understanding CTP pathophysiology. CTP retains the intrinsic oscillatory factors defined by the homeostatic regulation of platelet count, presenting as reciprocal platelet/thrombopoietin oscillations and stable oscillation periodicity. Moreover, CTP patients possess pathogenic factors destabilizing the platelet homeostatic system thereby creating opportunities for external perturbations to initiate and sustain the exaggerated platelet oscillations. Beyond humoral and cell-mediated autoimmunity, we propose recently uncovered germline and somatic genetic variants, such as those of MPL, STAT3 or DNMT3A, as pathogenic factors in thrombocytopenia-related CTP. Likewise, the JAK2 V617F or BCR::ABL1 translocation that drives underlying myeloproliferative diseases may also play a pathogenic role in hydroxyurea-induced CTP, where hydroxyurea treatment can serve as both a trigger and a pathogenic factor of platelet oscillation. Elucidating the pathogenic landscape of CTP provides an opportunity for targeted therapeutic approaches in the future.


Assuntos
Neoplasias da Medula Óssea , Transtornos Mieloproliferativos , Trombocitopenia , Humanos , Hidroxiureia/uso terapêutico , Trombocitopenia/etiologia , Trombocitopenia/genética , Contagem de Plaquetas , Plaquetas , Transtornos Mieloproliferativos/genética
2.
Transfusion ; 63(10): 1969-1977, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37632701

RESUMO

BACKGROUND: Paroxysmal cold hemoglobinuria (PCH) is a rare form of autoimmune hemolytic anemia (AIHA), mainly affecting children. The diagnosis and management are challenging due to similarities to other causes for AIHA and limited availability to Donath-Landsteiner (DL) testing. STUDY DESIGN AND METHODS: In this single-center retrospective study, we aimed to characterize the clinical presentation and outcomes of PCH patients, defined as having positive Donath-Landsteiner antibodies, compared to a cohort of AIHA patients. RESULTS: DL-positive patients were observed to have higher lactate dehydrogenase levels and lower reticulocyte counts compared to DL-negative patients, although this was not statistically significant. We also observed that using steroids in DL-positive patients did not significantly impact their recovery. DISCUSSION: Our findings support the limited published data on PCH patients and further prompt larger multicenter studies to further characterize these patients so that they are more readily identified, especially in centers where DL antibody testing is not readily available.

3.
Cell Rep ; 36(7): 109549, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407412

RESUMO

Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading to disease progression. Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. As described here, we demonstrate that cancer-derived small extracellular vesicles package increasing quantities of VEGF and other factors in response to anti-VEGF therapy. The packaging process of VEGF into small extracellular vesicles (EVs) is mediated by the tetraspanin CD63. Furthermore, small EV-VEGF (eVEGF) is not accessible to anti-VEGF antibodies and can trigger intracrine VEGF signaling in endothelial cells. eVEGF promotes angiogenesis and enhances tumor growth despite bevacizumab treatment. These data demonstrate a mechanism where VEGF is partitioned into small EVs and promotes tumor angiogenesis and progression. These findings have clinical implications for biomarkers and therapeutic strategies for ovarian cancer.


Assuntos
Vesículas Extracelulares/metabolismo , Tetraspanina 30/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Idoso , Animais , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neoplasias Ovarianas/tratamento farmacológico , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
J Fungi (Basel) ; 7(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34436160

RESUMO

A 56-year-old Hispanic man with a history of disseminated coccidioidomycosis was diagnosed with persistent glucocorticoid insufficiency and pseudohyperaldosteronism secondary to posaconazole toxicity. This case was notable for unexpected laboratory findings of both pseudohyperaldosteronism and severe glucocorticoid deficiency due to posaconazole's mechanism of action on the adrenal steroid synthesis pathway. Transitioning to fluconazole and starting hydrocortisone resolved the hypokalemia but not his glucocorticoid deficiency. This case highlights the importance of recognizing iatrogenic glucocorticoid deficiency with azole antifungal agents and potential long term sequalae.

5.
Cell Rep ; 34(6): 108726, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33567287

RESUMO

Tumor and stromal interactions consist of reciprocal signaling through cytokines, growth factors, direct cell-cell interactions, and extracellular vesicles (EVs). Small EVs (≤200 nm) have been considered critical messengers of cellular communication during tumor development. Here, we demonstrate that gain-of-function (GOF) p53 protein can be packaged into small EVs and transferred to fibroblasts. GOF p53 protein is selectively bound by heat shock protein 90 (HSP90), a chaperone protein, and packaged into small EVs. Inhibition of HSP90 activity blocks packaging of GOF, but not wild-type, p53 in small EVs. GOF p53-containing small EVs result in their conversion to cancer-associated fibroblasts. In vivo studies reveal that GOF p53-containing small EVs can enhance tumor growth and promote fibroblast transformation into a cancer-associated phenotype. These findings provide a better understanding of the complex interactions between cancer and stromal cells and may have therapeutic implications.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Vesículas Extracelulares , Mutação com Ganho de Função , Proteína Supressora de Tumor p53 , Animais , Neoplasias Colorretais/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Feminino , Células HT29 , Humanos , Camundongos , Camundongos Knockout , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Sci Adv ; 5(11): eaax8849, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31799396

RESUMO

Exosome cargoes are highly varied and include proteins, small RNAs, and genomic DNA (gDNA). The presence of gDNA suggests that different intracellular compartments contribute to exosome loading, resulting in distinct exosome subpopulations. However, the loading of gDNA and other nuclear contents into exosomes (nExo) remains poorly understood. Here, we identify the relationship between cancer cell micronuclei (MN), which are markers of genomic instability, and nExo formation. Imaging flow cytometry analyses reveal that 10% of exosomes derived from cancer cells and <1% of exosomes derived from blood and ascites from patients with ovarian cancer carry nuclear contents. Treatment with genotoxic drugs resulted in increased MN and nExos both in vitro and in vivo. We observed that multivesicular body precursors and exosomal markers, such as the tetraspanins, directly interact with MN. Collectively, this work provides new insights related to nExos, which have implications for cancer biomarker development.


Assuntos
DNA/genética , Exossomos/metabolismo , Micronúcleos com Defeito Cromossômico , Tetraspaninas/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Feminino , Humanos , Neoplasias Ovarianas/genética
7.
Mol Cancer Ther ; 18(5): 969-979, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30926640

RESUMO

EP-100 is a synthetic lytic peptide that specifically targets the gonadotropin-releasing hormone receptor on cancer cells. To extend the utility of EP-100, we aimed to identify effective combination therapies with EP-100 for ovarian cancer and explore potential mechanisms of this combination. A series of in vitro (MTT assay, immunoblot analysis, reverse-phase protein array, comet assay, and immunofluorescence staining) and in vivo experiments were carried out to determine the biological effects of EP-100 alone and in combination with standard-of-care drugs. EP-100 decreased the viability of ovarian cancer cells and reduced tumor growth in orthotopic mouse models. Of five standard drugs tested (cisplatin, paclitaxel, doxorubicin, topotecan, and olaparib), we found that the combination of EP-100 and olaparib was synergistic in ovarian cancer cell lines. Further experiments revealed that combined treatment of EP-100 and olaparib significantly increased the number of nuclear foci of phosphorylated histone H2AX. In addition, the extent of DNA damage was significantly increased after treatment with EP-100 and olaparib in comet assay. We performed reverse-phase protein array analyses and identified that the PI3K/AKT pathway was inhibited by EP-100, which we validated with in vitro experiments. In vivo experiment using the HeyA8 mouse model demonstrated that mice treated with EP-100 and olaparib had lower tumor weights (0.06 ± 0.13 g) than those treated with a vehicle (1.19 ± 1.09 g), EP-100 alone (0.62 ± 0.78 g), or olaparib alone (0.50 ± 0.63 g). Our findings indicate that combining EP-100 with olaparib is a promising therapeutic strategy for ovarian cancer.


Assuntos
Neoplasias Ovarianas/tratamento farmacológico , Peptídeos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Receptores LHRH/genética , Animais , Proteína BRCA1/genética , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Peptídeos/síntese química , Ftalazinas/farmacologia , Piperazinas/farmacologia , Receptores LHRH/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Cancer Ther ; 18(2): 421-436, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30420565

RESUMO

Systematic approaches for accurate repurposing of targeted therapies are needed. We developed and aimed to biologically validate our therapy predicting tool (TPT) for the repurposing of targeted therapies for specific tumor types by testing the role of Bromodomain and Extra-Terminal motif inhibitors (BETi) in inhibiting BRD4 function and downregulating Notch3 signaling in ovarian cancer.Utilizing established ovarian cancer preclinical models, we carried out in vitro and in vivo studies with clinically relevant BETis to determine their therapeutic effect and impact on Notch3 signaling.Treatment with BETis or siRNA-mediated BRD4 knockdown resulted in decreased cell viability, reduced cell proliferation, and increased cell apoptosis in vitro. In vivo studies with orthotopic mouse models demonstrated that treatment with BETi decreased tumor growth. In addition, knockdown of BRD4 with doxycycline-inducible shRNA increased survival up to 50% (P < 0.001). Treatment with either BETis or BRD4 siRNA decreased Notch3 expression both in vitro and in vivo BRD4 inhibition also decreased the expression of NOTCH3 targets, including HES1 Chromatin immunoprecipitation revealed that BRD4 was present at the NOTCH3 promoter.Our findings provide biological validation for the TPT by demonstrating that BETis can be an effective therapeutic agent for ovarian cancer by downregulating Notch3 expression.The TPT could rapidly identify candidate drugs for ovarian or other cancers along with novel companion biomarkers.


Assuntos
Acetamidas/administração & dosagem , Azepinas/administração & dosagem , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Receptor Notch3/metabolismo , Fatores de Transcrição/metabolismo , Acetamidas/farmacologia , Animais , Azepinas/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Proteínas Nucleares/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Nat Commun ; 9(1): 2923, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050129

RESUMO

The standard treatment for high-grade serous ovarian cancer is primary debulking surgery followed by chemotherapy. The extent of metastasis and invasive potential of lesions can influence the outcome of these primary surgeries. Here, we explored the underlying mechanisms that could increase metastatic potential in ovarian cancer. We discovered that FABP4 (fatty acid binding protein) can substantially increase the metastatic potential of cancer cells. We also found that miR-409-3p regulates FABP4 in ovarian cancer cells and that hypoxia decreases miR-409-3p levels. Treatment with DOPC nanoliposomes containing either miR-409-3p mimic or FABP4 siRNA inhibited tumor progression in mouse models. With RPPA and metabolite arrays, we found that FABP4 regulates pathways associated with metastasis and affects metabolic pathways in ovarian cancer cells. Collectively, these findings demonstrate that FABP4 is functionally responsible for aggressive patterns of disease that likely contribute to poor prognosis in ovarian cancer.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias Ovarianas/genética
10.
PLoS One ; 12(12): e0189081, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29206870

RESUMO

Cell adhesion and apicobasal polarity together maintain epithelial tissue organization and homeostasis. Loss of adhesion has been described as a prerequisite for the epithelial to mesenchymal transition. However, what role misregulation of apicobasal polarity promotes tumor initiation and/or early progression remains unclear. We find that human low-grade endometrial cancers are associated with disrupted localization of the apical polarity protein Par3 and Ezrin while, the adhesion molecule E-cadherin remains unchanged, accompanied by decreased Notch signaling, and altered Notch receptor localization. Depletion of Par3 or Ezrin, in a cell-based model, results in loss of epithelial architecture, differentiation, increased proliferation, migration and decreased Notch signaling. Re-expression of Par3 in endometrial cancer cell lines with disrupted Par3 protein levels blocks proliferation and reduces migration in a Notch dependent manner. These data uncover a function for apicobasal polarity independent of cell adhesion in regulating Notch-mediated differentiation signals in endometrial epithelial cells.


Assuntos
Diferenciação Celular , Polaridade Celular/fisiologia , Proliferação de Células , Neoplasias do Endométrio/patologia , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Cães , Feminino , Humanos , Células Madin Darby de Rim Canino
11.
Oncotarget ; 8(57): 96496-96505, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29228548

RESUMO

Anti-angiogenesis therapy has shown clinical benefit in patients with high-grade serous ovarian cancer (HGSC), but adaptive resistance rapidly emerges. Thus, approaches to overcome such resistance are needed. We developed the setting of adaptive resistance to anti-VEGF therapy, and performed a series of in vivo experiments in both immune competent and nude mouse models. Given the pro-angiogenic properties of tumor-associated macrophages (TAMs) and the dominant role of CSF1R in macrophage function, we added CSF1R inhibitors following emergence of adaptive resistance to anti-VEGF antibody. Mice treated with a CSF1R inhibitor (AC708) after anti-VEGF antibody resistance had little to no measurable tumor burden upon completion of the experiment while those that did not receive a CSF1R inhibitor still had abundant tumor. To mimic clinically used regimens, mice were also treated with anti-VEGF antibody and paclitaxel until resistance emerged, and then a CSF1R inhibitor was added. The addition of a CSF1R inhibitor restored response to anti-angiogenesis therapy, resulting in 83% lower tumor burden compared to treatment with anti-VEGF antibody and paclitaxel alone. Collectively, our data demonstrate that the addition of a CSF1R inhibitor to anti-VEGF therapy and taxane chemotherapy results in robust anti-tumor effects.

12.
Gastroenterol Res Pract ; 2016: 7896716, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904111

RESUMO

The role of Human Papillomavirus (HPV) in colorectal carcinogenesis remains elusive. Based on the high incidence of HPV-associated malignancies among Puerto Rican Hispanics, this study aimed to assess the prevalence of HPV infection and viral integration in colorectal tissues in order to evaluate its putative role in colorectal cancer (CRC). In this case-control study, the prevalence of HPV infection in CRC (cases n = 45) and normal colon mucosa from cancer-free subjects (controls n = 36) was assessed by a nested PCR strategy. HPV-16 genotyping was performed in HPV-positive tissues and the physical status of the HPV-16 genome was determined by E2 detection. HPV was detected in 19 of 45 (42.2%) CRC cases (mean age 61.1 ± 10.7 years, 24 males) and in 1 of 36 (2.8%) controls (mean age 60.9 ± 9.6 years, 24 males) with an OR = 25.58 (95% CI 3.21 to 203.49). HPV-16 was detected in 63.2% of the HPV-positive colorectal tumors; genome integration was observed in all HPV-16 positive cases. This is the first report showing the high prevalence of HPV infections in Caribbean Hispanic colorectal tumors. Despite evidence of HPV integration into the host genome, further mechanistic analysis examining HPV oncoprotein expression and the putative role of these oncoproteins in colorectal carcinogenesis is warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...