Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 424: 136475, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37269633

RESUMO

In this work, two sensitive droplet-based luminescent assays with smartphone readout for the determination of trimethylamine nitrogen (TMA-N) and total volatile basic nitrogen (TVB-N) are reported. Both assays exploit the luminescence quenching of copper nanoclusters (CuNCs) produced when exposed to volatile nitrogen bases. In addition, hydrophobic-based cellulose substrates demonstrated their suitability as holders for both in-drop volatile enrichment and subsequent smartphone-based digitization of the enriched colloidal solution of CuNCs. Under optimal conditions, enrichment factors of 181 and 153 were obtained with the reported assays for TMA-N and TVB-N, respectively, leading to methodological LODs of 0.11 mg/100 g and 0.27 mg/100 g for TMA-N and TVB-N, respectively. The repeatability, expressed as RSD, was 5.2% and 5.6% for TMA-N and TVB-N, respectively (N = 8). The reported luminescent assays were successfully applied to the analysis of fish samples, showing statistically comparable results to those obtained with the reference methods of analysis.


Assuntos
Luminescência , Smartphone , Animais , Metilaminas/análise , Peixes , Nitrogênio/análise
2.
ACS Sens ; 7(3): 839-848, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35285629

RESUMO

The present work reports on the assessment of widely available waterproof cellulose-based substrates for the development of sensitive in-drop plasmonic sensing approaches. The applicability of three inexpensive substrates, namely, Whatman 1PS, polyethylene-coated filter paper, and tracing paper, as holders for microvolumes of colloidal solutions was evaluated. Waterproof cellulose-based substrates demonstrated to be highly convenient platforms for analytical purposes, as they enabled in situ generation of volatiles and syringeless drop exposure unlike conventional single-drop microextraction approaches and can behave as sample compartments for smartphone-based colorimetric sensing in an integrated way. Remarkably, large drop volumes (≥20 µL) of colloidal solutions can be employed for enrichment processes when using Whatman 1PS as holder. In addition, the stability and potential applicability of spherical, rod-shaped, and core-shell metallic NPs onto waterproof cellulose-based substrates was evaluated. In particular, Au@AgNPs showed potential for the colorimetric detection of in situ generated H2S, I2, and Br2, whereas AuNRs hold promise for I2, Br2, and Hg0 colorimetric sensing. As a proof of concept, a smartphone-based colorimetric assay for determination of acid-labile sulfide in environmental water samples was developed with the proposed approach taking advantage of the ability of Au@AgNPs for H2S sensing. The assay showed a limit of detection of 0.46 µM and a repeatability of 4.4% (N = 8), yielding satisfactory recoveries (91-107%) when applied to the analysis of environmental waters.


Assuntos
Celulose , Colorimetria , Ácidos , Smartphone , Sulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...