Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(3): e0277323, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38329351

RESUMO

A significant increase of hospital-acquired bacterial infections during the COVID-19 pandemic has become an urgent medical problem. Clostridioides difficile is an urgent antibiotic-resistant bacterial pathogen and a leading causative agent of nosocomial infections. The increasing recurrence of C. difficile infection and antibiotic resistance in C. difficile has led to an unmet need for the discovery of new compounds distinctly different from present antimicrobials, while antimicrobial peptides as promising alternatives to conventional antibiotics have attracted growing interest recently. Protein synthesis is an essential metabolic process in all bacteria and a validated antibiotic target. Initiation factor 1 from C. difficile (Cd-IF1) is the smallest of the three initiation factors that acts to establish the 30S initiation complex to initiate translation during protein biosynthesis. Here, we report the solution nuclear magnetic resonance (NMR) structure of Cd-IF1 which adopts a typical ß-barrel fold and consists of a five-stranded ß-sheet and one short α-helix arranged in the sequential order ß1-ß2-ß3-α1-ß4-ß5. The interaction of Cd-IF1 with the 30S ribosomal subunit was studied by NMR titration for the construction of a structural model of Cd-IF1 binding with the 30S subunit. The short α-helix in IF1 was found to be critical for IF1 ribosomal binding. A peptide derived from this α-helix was tested and displayed a high ability to inhibit the growth of C. difficile and other bacterial strains. These results provide a clue for the rational design of new antimicrobials.IMPORTANCEBacterial infections continue to represent a major worldwide health hazard due to the emergence of drug-resistant strains. Clostridioides difficile is a common nosocomial pathogen and the causative agent in many infections resulting in an increase in morbidity and mortality. Bacterial protein synthesis is an essential metabolic process and an important target for antibiotic development; however, the precise structural mechanism underlying the process in C. difficile remains unknown. This study reports the solution structure of C. difficile translation initiation factor 1 (IF1) and its interaction with the 30S ribosomal subunit. A short α-helix in IF1 structure was identified as critically important for ribosomal binding and function in regulating the translation initiation, which allowed a rational design of a new peptide. The peptide demonstrated a high ability to inhibit bacterial growth with broad-spectrum antibacterial activity. This study provides a new clue for the rational design of new antimicrobials against bacterial infections.


Assuntos
Infecções Bacterianas , Clostridioides difficile , Humanos , Peptídeos Antimicrobianos , Cádmio , Pandemias , Fatores de Iniciação de Peptídeos , Antibacterianos/farmacologia
2.
Mater Sci Eng C Mater Biol Appl ; 124: 112061, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33947555

RESUMO

Natural, biocompatible, and biodegradable composite nanofibers made of Aloe vera extract, pullulan, chitosan, and citric acid were successfully produced via Forcespinning® technology. The addition of Aloe vera extract at different weight percent loadings was investigated. The morphology, thermal properties, physical properties, and water absorption of the nanofibers were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The developed nanofiber membranes exhibited good water absorption capabilities, synergistic antibacterial activity against Escherichia coli, and promoted cell attachment and growth. Its porous and high surface area structure make it a potential candidate for wound dressing applications due to its ability to absorb excessive blood and exudates, as well as provide protection from infection while maintaining good thermal stability.


Assuntos
Aloe , Quitosana , Nanofibras , Antibacterianos/farmacologia , Bandagens
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...