Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 19(3): 32-43, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29575596

RESUMO

The transport-based dose calculation algorithm Acuros XB (AXB) has been shown to accurately account for heterogeneities primarily through comparisons with Monte Carlo simulations. This study aims to provide additional experimental verification of AXB for clinically relevant flattened and unflattened beam energies in low density phantoms of the same material. Polystyrene slabs were created using a bench-top 3D printer. Six slabs were printed at varying densities from 0.23 to 0.68 g/cm3 , corresponding to different density humanoid tissues. The slabs were used to form different single and multilayer geometries. Dose was calculated with Eclipse™ AXB 11.0.31 for 6MV, 15MV flattened and 6FFF (flattening filter free) energies for field sizes of 2 × 2 and 5 × 5 cm2 . EBT3 film was inserted into the phantoms, which were irradiated. Absolute dose profiles and 2D Gamma analyses were performed for 96 dose planes. For all single slab configurations and energies, absolute dose differences between the AXB calculation and film measurements remained <3% for both fields in the high-dose region, however, larger disagreement was seen within the penumbra. For the multilayered phantom, percentage depth dose with AXB was within 5% of discrete film measurements. The Gamma index at 2%/2 mm averaged 98% in all combinations of fields, phantoms and photon energies. The transport-based dose algorithm AXB is in good agreement with the experimental measurements for small field sizes using 6MV, 6FFF and 15MV beams adjacent to various low-density heterogeneous media. This work provides preliminary experimental grounds to support the use of AXB for heterogeneous dose calculation purposes.


Assuntos
Algoritmos , Imagens de Fantasmas , Fótons , Impressão Tridimensional/instrumentação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Humanos , Método de Monte Carlo , Doses de Radiação , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
2.
Med Phys ; 45(1): 402-413, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29164632

RESUMO

PURPOSE: To investigate empirically the energy dependence of the detector response of two in vivo luminescence detectors, LiF:Mg,Cu,P (MCP-N) high-sensitivity TLDs and Al2 O3 :C OSLDs, in the 40-300-kVp energy range in the context of in vivo surface dose measurement. As these detectors become more prevalent in clinical and preclinical in vivo measurements, knowledge of the variation in the empirical dependence of the measured response of these detectors across a wide spectrum of beam qualities is important. METHOD: We characterized a large range of beam qualities of three different kilovoltage x-ray units: an Xstrahl 300 Orthovoltage unit, a Precision x-Ray X-RAD 320ix biological irradiator, and a Varian On-Board Imaging x-ray unit. The dose to water was measured in air according to the AAPM's Task Group 61 protocol. The OSLDs and TLDs were irradiated under reference conditions on the surface of a water phantom to provide full backscatter conditions. To assess the change in sensitivity in the long term, we separated the in vivo dosimeters of each type into an experimental and a reference group. The experimental dosimeters were irradiated using the kilovoltage x-ray units at each beam quality used in this investigation, while the reference group received a constant 10 cGy irradiation at 6 MV from a Varian clinical linear accelerator. The individual calibration of each detector was verified in cycles where both groups received a 10 cGy irradiation at 6 MV. RESULTS: The nanoDot OSLDs were highly reproducible, with ±1.5% variation in response following >40 measurement cycles. The TLDs lost ~20% of their signal sensitivity over the course of the study. The relative light output per unit dose to water of the MCP-N TLDs did not vary with beam quality for beam qualities with effective energies <50 keV (~150 kVp/6 mm Al). At higher energies, they showed a reduced (~75-85%) light output per unit dose relative to 6 MV x rays. The nanoDot OSLDs exhibited a very strong (120-408%) dependency of the light output relative to 6 MV x rays. Variations up to 15% between different x-ray units with equivalent effective energies were also observed. CONCLUSIONS: While convenient for clinical use, nanoDot OSLDs exhibit a strong variation in their measured light output per unit dose relative to 6 MV in the 40-300 kV x-ray range. This variability differs unit-to-unit, limiting their effective use for in vivo dosimetry applications in the kilovoltage x-ray energy range. MCP-N TLDs offer a much more stable response, but suffer from variations in sensitivity over time dependent on radiation history, which requires careful experimental handling.


Assuntos
Dosimetria por Luminescência Estimulada Opticamente/instrumentação , Dosímetros de Radiação , Dosimetria Termoluminescente/instrumentação , Ar , Calibragem , Aceleradores de Partículas , Imagens de Fantasmas , Água , Raios X
3.
Phys Med Biol ; 61(4): 1476-98, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26808280

RESUMO

This is a proof of principle study on an algorithm for optimizing external beam radiotherapy in terms of both photon beamlet energy and fluence. This simultaneous beamlet energy and fluence optimization is denoted modulated photon radiotherapy (XMRT). XMRT is compared with single-energy intensity modulated radiotherapy (IMRT) for five clinically relevant test geometries to determine whether treating beamlet energy as a decision variable improves the dose distributions. All test geometries were modelled in a cylindrical water phantom. XMRT optimized the fluence for 6 and 18 MV beamlets while IMRT optimized with only 6 MV and only 18 MV. CERR (computational environment for radiotherapy research) was used to calculate the dose deposition matrices and the resulting dose for XMRT and IMRT solutions. Solutions were compared via their dose volume histograms and dose metrics, such as the mean, maximum, and minimum doses for each structure. The homogeneity index (HI) and conformity number (CN) were calculated to assess the quality of the target dose coverage. Complexity of the resulting fluence maps was minimized using the sum of positive gradients technique. The results showed XMRT's ability to improve healthy-organ dose reduction while yielding comparable coverage of the target relative to IMRT for all geometries. All three energy-optimization approaches yielded similar HI and CNs for all geometries, as well as a similar degree of fluence map complexity. The dose reduction provided by XMRT was demonstrated by the relative decrease in the dose metrics for the majority of the organs at risk (OARs) in all geometries. Largest reductions ranged between 5% to 10% in the mean dose to OARs for two of the geometries when compared with both single-energy IMRT schemes. XMRT has shown potential dosimetric benefits through improved OAR sparing by allowing beam energy to act as a degree of freedom in the EBRT optimization process.


Assuntos
Algoritmos , Fótons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Órgãos em Risco , Dosagem Radioterapêutica
4.
Med Phys ; 38(2): 932-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21452729

RESUMO

PURPOSE: Total body irradiation (TBI) techniques aim to deliver a uniform radiation dose to a patient with an irregular body contour and a heterogeneous density distribution to within +/-10% of the prescribed dose. In the current article, the authors present a novel, aperture modulated, translating bed TBI (AMTBI) technique that produces a high degree of dose uniformity throughout the entire patient. METHODS: The radiation beam is dynamically shaped in two dimensions using a multileaf collimator (MLC). The irregular surface compensation algorithm in the Eclipse treatment planning system is used for fluence optimization, which is performed based on penetration depth and internal inhomogeneities. Two optimal fluence maps (AP and PA) are generated and beam apertures are created to deliver these optimal fluences. During treatment, the patient/phantom is translated on a motorized bed close to the floor (source to bed distance: 204.5 cm) under a stationary radiation beam with 0 degree gantry angle. The bed motion and dynamic beam apertures are synchronized. RESULTS: The AMTBI technique produces a more homogeneous dose distribution than fixed open beam translating bed TBI. In phantom studies, the dose deviation along the midline is reduced from 10% to less than 5% of the prescribed dose in the longitudinal direction. Dose to the lung is reduced by more than 15% compared to the unshielded fixed open beam technique. At the lateral body edges, the dose received from the open beam technique was 20% higher than that prescribed at umbilicus midplane. With AMTBI the dose deviation in this same region is reduced to less than 3% of the prescribed dose. Validation of the technique was performed using thermoluminescent dosimeters in a Rando phantom. Agreement between calculation and measurement was better than 3% in all cases. CONCLUSIONS: A novel, translating bed, aperture modulated TBI technique that employs dynamically shaped MLC defined beams is shown to improve dose uniformity in three dimensions. In comparison with the fixed open beam TBI technique, homogeneity of dose distribution is greatly improved.


Assuntos
Movimento (Física) , Posicionamento do Paciente/métodos , Irradiação Corporal Total/métodos , Humanos , Imagens de Fantasmas , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador , Dosimetria Termoluminescente
5.
J Appl Clin Med Phys ; 11(3): 3216, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20717089

RESUMO

During the recommissioning of a Philips RT-250 kilovoltage X-ray unit, unexpected output variations with tube head rotation (cross-plane) and tube head tilt (in-plane) were observed. The measured output showed an increase of up to 7.3% relative to the neutral position (0? in-plane and 0? cross-plane) over the possible range of angles of in-plane rotation for 75 kVp (half-value layer, HVL = 1.84 mm Al). A less pronounced but noticeable output change (with respect to the neutral position) was observed for cross-plane rotation reaching 2% for the 225 kVp beam (HVL = 0.90 mm Cu). This output variation was observed while manually adjusting the current to maintain constancy according to the current meter gauge. In order to address the observed output dependence with head orientation, the dose rate monitor chamber of the kilovoltage unit was calibrated to monitor the beam output in real time. The dose rate was manually adjusted to maintain a constant dose rate (in r/min) as displayed on the r/min gauge. This approach resulted in maintaining beam output for the 75 kVp and the 225 kVp beams within +/- 2% for the in-plane angle variation and +/- 0.5% for the cross-plane angle variation. A daily output check that includes ion chamber-based measurements at the neutral position and an in-plane angle of 45? has been implemented using the constant dose rate approach to monitor the stability of the X-ray beams. As a result of the output variations with in/cross-plane rotation, the quality control (QC) procedures that are typically used for clinical setup have been modified to test the stability of the beams under the non-neutral positioning of the X-ray tube.


Assuntos
Cabeça/efeitos da radiação , Radiometria/instrumentação , Terapia por Raios X , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...