Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Jpn J Infect Dis ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825455

RESUMO

Biofilm-producing methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative Staphylococci (MR-CoNS) are a clinical challenge for the treatment of healthcare-associated infections. As alternative antimicrobial options are needed, we aimed to determine the effect of curcumin-chitosan magnetic nanoparticles on the biofilm of staphylococcal clinical isolates. MRSA and CoNS clinical isolates were identified by MALDI-TOF mass spectrometry. Antimicrobial susceptibility testing was performed by broth microdilution. Nanoparticles were synthesized by co-precipitation of magnetic nanoparticles (MNP) and encapsulation by ionotropic gelation of curcumin (Cur) and chitosan (Chi). Biofilm inhibition and eradication by nanoparticles with and without the addition of oxacillin was assessed on staphylococcal strains. Cur-Chi-MNP showed antimicrobial activity on planktonic cells of MRSA and MR-CoNS strains and inhibited biofilm of MRSA. The addition of OXA to Cur-Chi-MNP increased biofilm inhibition and eradication activity against all Staphylococci strains (p=0.0007); higher biofilm activity was observed in early biofilm stages. Cur-Chi-MNP showed antimicrobial and biofilm inhibition activity against S. aureus. The addition of OXA increased biofilm inhibition and eradication activity against all Staphylococci strains. A combination treatment of Cur-Chi-MNP and OXA could be potentially used to treat staphylococcal biofilm-associated infections in its early stages before the establishment of biofilm bacterial cells.

2.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977856

RESUMO

AIMS: To demonstrate the in vitro activity of orally available antibiotics against Staphylococcus aureus isolated from bone or orthopedic implant materials. The biofilm eradication of the combination of three antibiotics was also assessed. METHODS AND RESULTS: Clinical isolates from orthopedic infection samples were collected, and S. aureus isolates were classified according to their biofilm production and composition. Almost all S. aureus isolates (n = 36, 97.3%) produced biofilm and the major biofilm components were polysaccharides. Antimicrobial susceptibility was determined in planktonic (minimal inhibitory concentration; MIC) and biofilm cells (minimal biofilm eradication concentration; MBEC) using the MBEC Calgary Device. Overall, the MBEC ranged higher than the MIC. When combined at borderline-susceptible concentrations, moxifloxacin-rifampin and doxycycline-rifampin were both able to eradicate biofilms in a third of the strains whereas the doxycycline-moxifloxacin combination proved ineffective at eradicating biofilm, inhibiting it only in three strains. CONCLUSIONS: We propose rifampin in combination with moxifloxacin or doxycycline for the design of clinical trials of bone and/or orthopedic device infection without proper debridement or material retention.


Assuntos
Antibacterianos , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Staphylococcus aureus , Rifampina/farmacologia , Moxifloxacina/farmacologia , Moxifloxacina/uso terapêutico , Doxiciclina/farmacologia , Plâncton , Infecções Estafilocócicas/tratamento farmacológico , Biofilmes , Testes de Sensibilidade Microbiana
3.
Indian J Med Microbiol ; 41: 83-89, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36123270

RESUMO

PURPOSE: Staphylococcus hominis is a coagulase-negative opportunistic pathogen responsible for implanted medical device infections. Rapid identification and virulence factors detection are crucial for appropriate antimicrobial therapy. We aimed to search protein biomarker peaks for rapid classification of antibiotic resistance and subspecies of S. hominis using MALDI-TOF MS. METHODS: S. hominis clinical isolates (n = 148) were screened for subspecies differentiation by novobiocin resistance. Biofilm composition and formation were determined by detachment assay and crystal violet staining, respectively. Antibiotic susceptibility was performed by the broth microdilution method. The search for potential biomarkers peaks was enabled by ClinProTools 3.0, flexAnalysis 3.4, and Biotools 3.2 for statistical analysis, peak visualization, and protein/peptide alignment, respectively. RESULTS: Of 148 isolates, 12.16% were classified as S. hominis subsp. novobiosepticus, 77.77% were biofilm producers, and ˃ 50% were multidrug-resistant. Two potential biomarker peaks, 8975 m/z and 9035 m/z were detected for the discrimination of methicillin resistance with a sensitivity of 96.72%. The following peaks were detected for subspecies differentiation: 2582 m/z, 2823 m/z, and 2619 m/z with 88.89-98.28% of sensitivity. CONCLUSIONS: We found potential biomarker peaks to predict methicillin resistance and discriminate S. hominis subspecies during routine MALDI-TOF MS identification in a clinical setting to enable better antibiotic treatment.


Assuntos
Anti-Infecciosos , Staphylococcus hominis , Humanos , Resistência a Meticilina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Antibacterianos/farmacologia
4.
J Microbiol Methods ; 198: 106493, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35643294

RESUMO

Coagulase-negative Staphylococcus hominis causes bloodstream infections and often can form biofilms on medical devices. This study aimed to improve the current methodology for antimicrobial susceptibility testing (AST) in biofilm-growing S. hominis isolates. Biofilm production of S. hominis was assessed using the crystal violet staining method in trypticase soy broth supplemented with 1% glucose (TSBglu1%), Mueller-Hinton broth (MHB), or MHBglu1% using flat-bottom plates or the Calgary device. Susceptibility to antibiotics was assessed using the broth microdilution method (MHB and TSBglu1%) in planktonic cells (round-bottom plates) and biofilm cells (flat-bottom plates and the Calgary device). Biofilm determination using TSBglu1% yielded better performance over MHB, and flat-bottom plates without agitation were preferred over the Calgary device. Higher fold dilution values between the minimum biofilm eradication concentration (MBEC) and the minimum inhibitory concentration (MIC) were obtained in MHB for almost all antibiotics, except for linezolid. TSBglu1% and flat-bottom polystyrene plates were preferred over MHB and the Calgary device for biofilm determination. AST in biofilm-growing S. hominis showed better performance using TSBglu1% compared to MHB. Therefore, when comparing MBEC and MIC values, AST in planktonic cells could also be performed using TSBglu1% instead of MHB.


Assuntos
Biofilmes , Staphylococcus hominis , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Plâncton , Staphylococcus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...