Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(20): 21930-21938, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799319

RESUMO

This research focuses on developing MIL-53-type compounds with Fe obtained with ligands derived from PET waste, followed by the controlled addition of hydrofluoric acid (HF). Incorporating HF into the MOF structure induced substantial changes in the material textural properties, resulting in a significant change in CO2 adsorption. Furthermore, a distinctive structural alteration (breathing effect) was observed in the CO2 isotherms at different temperatures; these structural changes have not been observed by X-ray diffraction (XRD) because this characterization has been performed at room temperature, whereas the adsorption experiments were conducted at 260, 273, and 303 K and different pressures. Subsequently, DFT studies were performed to investigate the CO2-filling mechanisms and elucidate the material respiration effect. This approach offers promising opportunities for sustainable materials with improved gas adsorption properties.

2.
Materials (Basel) ; 16(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36614456

RESUMO

In this work, the influence of degassing temperature and urea functionalization were investigated as ways to improve the CO2 adsorption performance of CPO-27-Mg. Through post-synthesis modification treatments, four samples with different degrees of urea functionalization were obtained, incorporating 10, 25, 50, and 100% of urea concerning the metal sites of the MOF. Alternatively, the influence of the degassing temperature of the non-functionalized MOF between 70 and 340 °C was also evaluated. The resulting compounds were characterized by N2 adsorption-desorption isotherms at -196 °C using TGA-MS, FTIR, and PXRD. Finally, the thermally treated and functionalized CPO-27-Mg was evaluated for CO2 capture.

3.
RSC Adv ; 11(23): 13814-13820, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35423940

RESUMO

Crystal structure and properties of Sr11Mo4O23 treated at 1100 and 1400 °C were studied via synchrotron X-ray powder diffraction and thermogravimetric analysis, coupled with mass spectrometry. Synchrotron studies reveal the crystallographic effect of the annealing temperature, showing that the lowest-temperature phase must be defined in a triclinic symmetry, in contrast to the cubic one obtained at 1400 °C. The mass spectrometry allowed the identification of the released compounds during the thermogravimetric analysis, thus unveiling the physicochemical behavior of the sample during the heating process. Furthermore, an aging analysis was made, confirming the superior stability of this sample when it is treated at 1400 °C. Finally, an optimized sintering procedure allowed us to obtain a superior density and hence the highest conductivity measured so far for this system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...