Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(5): e0232234, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407410

RESUMO

Only a small fraction of the antigens expressed by malaria parasites have been evaluated as vaccine candidates. A successful malaria subunit vaccine will likely require multiple antigenic targets to achieve broad protection with high protective efficacy. Here we describe protective efficacy of a novel antigen, Plasmodium yoelii (Py) E140 (PyE140), evaluated against P. yoelii challenge of mice. Vaccines targeting PyE140 reproducibly induced up to 100% sterile protection in both inbred and outbred murine challenge models. Although PyE140 immunization induced high frequency and multifunctional CD8+ T cell responses, as well as CD4+ T cell responses, protection was mediated by PyE140 antibodies acting against blood stage parasites. Protection in mice was long-lasting with up to 100% sterile protection at twelve weeks post-immunization and durable high titer anti-PyE140 antibodies. The E140 antigen is expressed in all Plasmodium species, is highly conserved in both P. falciparum lab-adapted strains and endemic circulating parasites, and is thus a promising lead vaccine candidate for future evaluation against human malaria parasite species.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Imunização , Malária/prevenção & controle , Plasmodium yoelii/fisiologia , Animais , Antígenos de Protozoários/genética , Reações Cruzadas , Feminino , Regulação da Expressão Gênica , Camundongos , Plasmodium yoelii/genética , Plasmodium yoelii/imunologia
2.
PLoS One ; 14(1): e0210252, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30673723

RESUMO

The development of a sterilizing vaccine against malaria remains one of the highest priorities for global health research. While sporozoite vaccines targeting the pre-erythrocytic stage show great promise, it has not been possible to maintain efficacy long-term, likely due to an inability of these vaccines to maintain effector memory T cell responses in the liver. Vaccines based on human cytomegalovirus (HCMV) might overcome this limitation since vectors based on rhesus CMV (RhCMV), the homologous virus in rhesus macaques (RM), elicit and indefinitely maintain high frequency, non-exhausted effector memory T cells in extralymphoid tissues, including the liver. Moreover, RhCMV strain 68-1 elicits CD8+ T cells broadly recognizing unconventional epitopes exclusively restricted by MHC-II and MHC-E. To evaluate the potential of these unique immune responses to protect against malaria, we expressed four Plasmodium knowlesi (Pk) antigens (CSP, AMA1, SSP2/TRAP, MSP1c) in RhCMV 68-1 or in Rh189-deleted 68-1, which additionally elicits canonical MHC-Ia-restricted CD8+ T cells. Upon inoculation of RM with either of these Pk Ag expressing RhCMV vaccines, we obtained T cell responses to each of the four Pk antigens. Upon challenge with Pk sporozoites we observed a delayed appearance of blood stage parasites in vaccinated RM consistent with a 75-80% reduction of parasite release from the liver. Moreover, the Rh189-deleted RhCMV/Pk vectors elicited sterile protection in one RM. Once in the blood, parasite growth was not affected. In contrast to T cell responses induced by Pk infection, RhCMV vectors maintained sustained T cell responses to all four malaria antigens in the liver post-challenge. The delayed appearance of blood stage parasites is thus likely due to a T cell-mediated inhibition of liver stage parasite development. As such, this vaccine approach can be used to efficiently test new T cell antigens, improve current vaccines targeting the liver stage and complement vaccines targeting erythrocytic antigens.


Assuntos
Antígenos de Protozoários/imunologia , Citomegalovirus/genética , Vacinas Antimaláricas/imunologia , Malária/imunologia , Parasitemia/imunologia , Plasmodium knowlesi/imunologia , Esporozoítos/imunologia , Animais , Anopheles/imunologia , Anopheles/parasitologia , Feminino , Vetores Genéticos/administração & dosagem , Memória Imunológica , Fígado/imunologia , Fígado/parasitologia , Macaca mulatta , Malária/sangue , Malária/parasitologia , Malária/prevenção & controle , Masculino , Parasitemia/sangue , Parasitemia/parasitologia , Parasitemia/prevenção & controle , Plasmodium knowlesi/genética , Proteínas de Protozoários/imunologia , Linfócitos T/imunologia , Linfócitos T/parasitologia
4.
PLoS One ; 11(10): e0163026, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695088

RESUMO

A DNA prime/adenovirus boost malaria vaccine encoding Plasmodium falciparum strain 3D7 CSP and AMA1 elicited sterile clinical protection associated with CD8+ T cell interferon-gamma (IFN-γ) cells responses directed to HLA class 1-restricted AMA1 epitopes of the vaccine strain 3D7. Since a highly effective malaria vaccine must be broadly protective against multiple P. falciparum strains, we compared these AMA1 epitopes of two P. falciparum strains (7G8 and 3D7), which differ by single amino acid substitutions, in their ability to recall CD8+ T cell activities using ELISpot and flow cytometry/intracellular staining assays. The 7G8 variant peptides did not recall 3D7 vaccine-induced CD8+ T IFN-γ cell responses in these assays, suggesting that protection may be limited to the vaccine strain. The predicted MHC binding affinities of the 7G8 variant epitopes were similar to the 3D7 epitopes, suggesting that the amino acid substitutions of the 7G8 variants may have interfered with TCR recognition of the MHC:peptide complex or that the 7G8 variant may have acted as an altered peptide ligand. These results stress the importance of functional assays in defining protective epitopes. Clinical Trials Registrations: NCT00870987, NCT00392015.


Assuntos
Epitopos/imunologia , Antígenos HLA/imunologia , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Citometria de Fluxo , Antígenos HLA-B/imunologia , Humanos , Interferon gama/farmacologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Membrana/imunologia , Proteínas de Protozoários/imunologia
5.
PLoS One ; 10(8): e0136109, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26292257

RESUMO

BACKGROUND: Nearly 100% protection against malaria infection can be achieved in humans by immunization with P. falciparum radiation-attenuated sporozoites (RAS). Although it is thought that protection is mediated by T cell and antibody responses, only a few of the many pre-erythrocytic (sporozoite and liver stage) antigens that are targeted by these responses have been identified. METHODOLOGY: Twenty seven P. falciparum pre-erythrocytic antigens were selected using bioinformatics analysis and expression databases and were expressed in a wheat germ cell-free protein expression system. Recombinant proteins were recognized by plasma from RAS-immunized subjects, and 21 induced detectable antibody responses in mice and rabbit and sera from these immunized animals were used to characterize these antigens. All 21 proteins localized to the sporozoite: five localized to the surface, seven localized to the micronemes, cytoplasm, endoplasmic reticulum or nucleus, two localized to the surface and cytoplasm, and seven remain undetermined. PBMC from RAS-immunized volunteers elicited positive ex vivo or cultured ELISpot responses against peptides from 20 of the 21 antigens. CONCLUSIONS: These T cell and antibody responses support our approach of using reagents from RAS-immunized subjects to screen potential vaccine antigens, and have led to the identification of a panel of novel P. falciparum antigens. These results provide evidence to further evaluate these antigens as vaccine candidates. TRIAL REGISTRATION: ClinicalTrials.gov NCT00870987 ClinicalTrials.gov NCT00392015.


Assuntos
Antígenos de Protozoários/imunologia , Eritrócitos/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Animais , Eritrócitos/parasitologia , Humanos , Imunização , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/parasitologia , Vacinas Antimaláricas/farmacologia , Malária Falciparum/sangue , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/imunologia , Coelhos , Esporozoítos/imunologia , Linfócitos T/imunologia , Linfócitos T/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...