Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 943: 173792, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38851337

RESUMO

Distinguishing between natural and anthropogenic processes in sedimentary records from estuaries with legacy pollutants is an essential task, as it provides baselines to predict future environmental trajectories of coastal areas. Here, we have addressed the recent transformation history of the mining-impacted Nalón Estuary (Asturias, N Spain). Surface and core sediment records from marshes and tidal flats were examined through a broad multidisciplinary approach, involving micropaleontological (benthic foraminifera), sedimentological (grain-size), geochemical (trace metals, major element Al and total organic carbon), physical (magnetic susceptibility, frequency-dependent magnetic susceptibility and large microplastics) and radioisotopic (210Pb, 137Cs and 239+240Pu) proxies. Results suggest that the interplay between natural (high fluvial influence and extreme hydrological events) and anthropogenic (coal and mercury mining disposals) factors induced strong sedimentation-erosion processes, further shaping the recent evolution of the estuary. Short-time scale and intense sedimentation processes were revealed by overall high sediment accumulation rates, the dilution of some geological signatures and the rapid formation of a marsh in the lower estuary bay. The increasing mining fingerprints during the 20th century were shortly interrupted by the catastrophic riverine flooding of 1938. Conversely, current erosional processes by fluvial influence led to the remobilization of contaminated sedimentary materials and exposure of mining-legacy Hg levels in tidal flats from the middle sector. Fluvial activity, floodings and taphonomic biases exerted a major control on benthic foraminifera since the 19th century, although Hg ecotoxicological effects on modern assemblages at certain areas within the estuary cannot be discarded. These findings, along with the documented enhanced erosion of marshes with 'trapped' pollutants (Hg, coal microparticles and microplastics), highlight the importance of monitoring the environmental and geomorphic processes taking place in historically-contaminated estuaries.

2.
Mar Pollut Bull ; 135: 977-987, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30301123

RESUMO

This work tackles a multidisciplinary study on the recent sedimentary record of the Bilbao estuary (northern Spain), which is the backbone of a city that was primarily industrial and now is widely recognized as a successful example of urban transformation. Although hotspots of heavily polluted materials still remain at the mouth of the two main tributaries (Galindo and Gobelas), the data obtained confirm the ongoing formation of a new layer of sediments (here called "postindustrial zone") covering historically polluted and azoic deposits. It is characterized by largely variable levels of metals and magnetic susceptibility and moderate-to-high abundances of benthic foraminifera. Monitoring of the evolution of this layer appears a key factor to assess environmental improvement and decision-making in polluted estuaries.


Assuntos
Monitoramento Ambiental/métodos , Estuários , Foraminíferos/fisiologia , Sedimentos Geológicos/química , Metais/análise , Animais , Organismos Aquáticos , Magnetismo , Paleontologia/métodos , Espanha , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...