Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Living Rev Relativ ; 13(1): 6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-28163615

RESUMO

We give a comprehensive review of the quantization of midisuperspace models. Though the main focus of the paper is on quantum aspects, we also provide an introduction to several classical points related to the definition of these models. We cover some important issues, in particular, the use of the principle of symmetric criticality as a very useful tool to obtain the required Hamiltonian formulations. Two main types of reductions are discussed: those involving metrics with two Killing vector fields and spherically-symmetric models. We also review the more general models obtained by coupling matter fields to these systems. Throughout the paper we give separate discussions for standard quantizations using geometrodynamical variables and those relying on loop-quantum-gravity-inspired methods.

2.
Phys Rev Lett ; 100(21): 211301, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18518596

RESUMO

We give an efficient method, combining number-theoretic and combinatorial ideas, to exactly compute black hole entropy in the framework of loop quantum gravity. Along the way we provide a complete characterization of the relevant sector of the spectrum of the area operator, including degeneracies, and explicitly determine the number of solutions to the projection constraint. We use a computer implementation of the proposed algorithm to confirm and extend previous results on the detailed structure of the black hole degeneracy spectrum.

3.
Phys Rev Lett ; 95(5): 051301, 2005 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-16090861

RESUMO

We show in this Letter that gravity coupled to a massless scalar field with full cylindrical symmetry can be exactly quantized by an extension of the techniques used in the quantization of Einstein-Rosen waves. This system provides a useful test bed to discuss a number of issues in quantum general relativity, such as the emergence of the classical metric, microcausality, and large quantum gravity effects. It may also provide an appropriate framework to study gravitational critical phenomena from a quantum point of view, issues related to black hole evaporation, and the consistent definition of test fields and particles in quantum gravity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...