Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Comput Methods Programs Biomed ; 242: 107837, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837888

RESUMO

BACKGROUND: We address the problem of determining the controllability and accessibility of nonlinear biosystems. We consider models described by affine-in-inputs ordinary differential equations, which are adequate for a wide array of biological processes. Roughly speaking, the controllability of a dynamical system determines the possibility of steering it from an initial state to any point in its neighbourhood; accessibility is a weaker form of controllability. METHODS: While the methodology for analysing the controllability of linear systems is well established, its generalization to the nonlinear case has proven elusive. Thus, a number of related but different properties - including different versions of accessibility, reachability or weak local controllability - have been defined to approach its study, and several partial results exist in lieu of a general test. Here, leveraging the applicable results from differential geometric control theory, we source sufficient conditions to assess nonlinear controllability, as well as a necessary and sufficient condition for accessibility. RESULTS: We develop an algorithmic procedure to evaluate these conditions efficiently, and we provide its open source implementation. Using this software tool, we analyse the accessibility and controllability of a number of models of biomedical interest. While some of them are fully controllable, we find others that are not, as is the case of some models of EGF and NFκB signalling networks. CONCLUSIONS: The contributions in this paper facilitate the accessibility and controllability analysis of nonlinear models, not only in biomedicine but also in other areas in which they have been rarely performed to date.


Assuntos
Dinâmica não Linear , Software , Transdução de Sinais
3.
PLoS Comput Biol ; 19(10): e1011014, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37851682

RESUMO

Mechanistic dynamical models allow us to study the behavior of complex biological systems. They can provide an objective and quantitative understanding that would be difficult to achieve through other means. However, the systematic development of these models is a non-trivial exercise and an open problem in computational biology. Currently, many research efforts are focused on model discovery, i.e. automating the development of interpretable models from data. One of the main frameworks is sparse regression, where the sparse identification of nonlinear dynamics (SINDy) algorithm and its variants have enjoyed great success. SINDy-PI is an extension which allows the discovery of rational nonlinear terms, thus enabling the identification of kinetic functions common in biochemical networks, such as Michaelis-Menten. SINDy-PI also pays special attention to the recovery of parsimonious models (Occam's razor). Here we focus on biological models composed of sets of deterministic nonlinear ordinary differential equations. We present a methodology that, combined with SINDy-PI, allows the automatic discovery of structurally identifiable and observable models which are also mechanistically interpretable. The lack of structural identifiability and observability makes it impossible to uniquely infer parameter and state variables, which can compromise the usefulness of a model by distorting its mechanistic significance and hampering its ability to produce biological insights. We illustrate the performance of our method with six case studies. We find that, despite enforcing sparsity, SINDy-PI sometimes yields models that are unidentifiable. In these cases we show how our method transforms their equations in order to obtain a structurally identifiable and observable model which is also interpretable.


Assuntos
Modelos Biológicos , Dinâmica não Linear , Algoritmos , Biologia de Sistemas/métodos , Biologia Computacional
4.
Bioengineering (Basel) ; 10(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37106670

RESUMO

Biological communities are populations of various species interacting in a common location. Microbial communities, which are formed by microorganisms, are ubiquitous in nature and are increasingly used in biotechnological and biomedical applications. They are nonlinear systems whose dynamics can be accurately described by models of ordinary differential equations (ODEs). A number of ODE models have been proposed to describe microbial communities. However, the structural identifiability and observability of most of them-that is, the theoretical possibility of inferring their parameters and internal states by observing their output-have not been determined yet. It is important to establish whether a model possesses these properties, because, in their absence, the ability of a model to make reliable predictions may be compromised. Hence, in this paper, we analyse these properties for the main families of microbial community models. We consider several dimensions and measurements; overall, we analyse more than a hundred different configurations. We find that some of them are fully identifiable and observable, but a number of cases are structurally unidentifiable and/or unobservable under typical experimental conditions. Our results help in deciding which modelling frameworks may be used for a given purpose in this emerging area, and which ones should be avoided.

5.
Bioinformatics ; 39(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36721336

RESUMO

MOTIVATION: The theoretical possibility of determining the state and parameters of a dynamic model by measuring its outputs is given by its structural identifiability and its observability. These properties should be analysed before attempting to calibrate a model, but their a priori analysis can be challenging, requiring symbolic calculations that often have a high computational cost. In recent years, a number of software tools have been developed for this task, mostly in the systems biology community. These tools have vastly different features and capabilities, and a critical assessment of their performance is still lacking. RESULTS: Here, we present a comprehensive study of the computational resources available for analysing structural identifiability. We consider 13 software tools developed in 7 programming languages and evaluate their performance using a set of 25 case studies created from 21 models. Our results reveal their strengths and weaknesses, provide guidelines for choosing the most appropriate tool for a given problem and highlight opportunities for future developments. AVAILABILITY AND IMPLEMENTATION: https://github.com/Xabo-RB/Benchmarking_files.


Assuntos
Benchmarking , Modelos Biológicos , Software , Linguagens de Programação , Biologia de Sistemas/métodos
6.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416122

RESUMO

MOTIVATION: Dynamic mechanistic modelling in systems biology has been hampered by the complexity and variability associated with the underlying interactions, and by uncertain and sparse experimental measurements. Ensemble modelling, a concept initially developed in statistical mechanics, has been introduced in biological applications with the aim of mitigating those issues. Ensemble modelling uses a collection of different models compatible with the observed data to describe the phenomena of interest. However, since systems biology models often suffer from a lack of identifiability and observability, ensembles of models are particularly unreliable when predicting non-observable states. RESULTS: We present a strategy to assess and improve the reliability of a class of model ensembles. In particular, we consider kinetic models described using ordinary differential equations with a fixed structure. Our approach builds an ensemble with a selection of the parameter vectors found when performing parameter estimation with a global optimization metaheuristic. This technique enforces diversity during the sampling of parameter space and it can quantify the uncertainty in the predictions of state trajectories. We couple this strategy with structural identifiability and observability analysis, and when these tests detect possible prediction issues we obtain model reparameterizations that surmount them. The end result is an ensemble of models with the ability to predict the internal dynamics of a biological process. We demonstrate our approach with models of glucose regulation, cell division, circadian oscillations and the JAK-STAT signalling pathway. AVAILABILITY AND IMPLEMENTATION: The code that implements the methodology and reproduces the results is available at https://doi.org/10.5281/zenodo.6782638. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Modelos Biológicos , Biologia de Sistemas , Reprodutibilidade dos Testes , Biologia de Sistemas/métodos , Incerteza , Cinética
7.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36398887

RESUMO

MOTIVATION: STRIKE-GOLDD is a toolbox that analyses the structural identifiability and observability of possibly non-linear, non-rational ODE models that may have known and unknown inputs. Its broad applicability comes at the expense of a lower computational efficiency than other tools. RESULTS: STRIKE-GOLDD 4.0 includes a new algorithm, ProbObsTest, specifically designed for the analysis of rational models. ProbObsTest is significantly faster than the previously available FISPO algorithm when applied to computationally expensive models. Providing both algorithms in the same toolbox allows combining generality and computational efficiency. STRIKE-GOLDD 4.0 is implemented as a Matlab toolbox with a user-friendly graphical interface. AVAILABILITY AND IMPLEMENTATION: STRIKE-GOLDD 4.0 is a free and open-source tool available under a GPLv3 license. It can be downloaded from GitHub at https://github.com/afvillaverde/strike-goldd. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software
8.
IEEE/ACM Trans Comput Biol Bioinform ; 20(3): 1725-1736, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36223355

RESUMO

Biological processes are often modelled using ordinary differential equations. The unknown parameters of these models are estimated by optimizing the fit of model simulation and experimental data. The resulting parameter estimates inevitably possess some degree of uncertainty. In practical applications it is important to quantify these parameter uncertainties as well as the resulting prediction uncertainty, which are uncertainties of potentially time-dependent model characteristics. Unfortunately, estimating prediction uncertainties accurately is nontrivial, due to the nonlinear dependence of model characteristics on parameters. While a number of numerical approaches have been proposed for this task, their strengths and weaknesses have not been systematically assessed yet. To fill this knowledge gap, we apply four state of the art methods for uncertainty quantification to four case studies of different computational complexities. This reveals the trade-offs between their applicability and their statistical interpretability. Our results provide guidelines for choosing the most appropriate technique for a given problem and applying it successfully.


Assuntos
Modelos Biológicos , Biologia de Sistemas , Biologia de Sistemas/métodos , Incerteza , Simulação por Computador
9.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34619769

RESUMO

Ordinary differential equation models are nowadays widely used for the mechanistic description of biological processes and their temporal evolution. These models typically have many unknown and nonmeasurable parameters, which have to be determined by fitting the model to experimental data. In order to perform this task, known as parameter estimation or model calibration, the modeller faces challenges such as poor parameter identifiability, lack of sufficiently informative experimental data and the existence of local minima in the objective function landscape. These issues tend to worsen with larger model sizes, increasing the computational complexity and the number of unknown parameters. An incorrectly calibrated model is problematic because it may result in inaccurate predictions and misleading conclusions. For nonexpert users, there are a large number of potential pitfalls. Here, we provide a protocol that guides the user through all the steps involved in the calibration of dynamic models. We illustrate the methodology with two models and provide all the code required to reproduce the results and perform the same analysis on new models. Our protocol provides practitioners and researchers in biological modelling with a one-stop guide that is at the same time compact and sufficiently comprehensive to cover all aspects of the problem.


Assuntos
Modelos Biológicos , Biologia de Sistemas , Calibragem , Biologia de Sistemas/métodos
10.
PLoS Comput Biol ; 17(10): e1009032, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648496

RESUMO

A recent paper published in PLOS Computational Biology [1] introduces the Scaling Invariance Method (SIM) for analysing structural local identifiability and observability. These two properties define mathematically the possibility of determining the values of the parameters (identifiability) and states (observability) of a dynamic model by observing its output. In this note we warn that SIM considers scaling symmetries as the only possible cause of non-identifiability and non-observability. We show that other types of symmetries can cause the same problems without being detected by SIM, and that in those cases the method may lead one to conclude that the model is identifiable and observable when it is actually not.


Assuntos
Biologia Computacional/métodos , Modelos Teóricos
11.
PLoS Comput Biol ; 17(1): e1008646, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497393

RESUMO

Reproducibility and reusability of the results of data-based modeling studies are essential. Yet, there has been-so far-no broadly supported format for the specification of parameter estimation problems in systems biology. Here, we introduce PEtab, a format which facilitates the specification of parameter estimation problems using Systems Biology Markup Language (SBML) models and a set of tab-separated value files describing the observation model and experimental data as well as parameters to be estimated. We already implemented PEtab support into eight well-established model simulation and parameter estimation toolboxes with hundreds of users in total. We provide a Python library for validation and modification of a PEtab problem and currently 20 example parameter estimation problems based on recent studies.


Assuntos
Linguagens de Programação , Biologia de Sistemas/métodos , Algoritmos , Bases de Dados Factuais , Modelos Biológicos , Modelos Estatísticos , Reprodutibilidade dos Testes
12.
Annu Rev Control ; 51: 441-459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33362427

RESUMO

The recent coronavirus disease (COVID-19) outbreak has dramatically increased the public awareness and appreciation of the utility of dynamic models. At the same time, the dissemination of contradictory model predictions has highlighted their limitations. If some parameters and/or state variables of a model cannot be determined from output measurements, its ability to yield correct insights - as well as the possibility of controlling the system - may be compromised. Epidemic dynamics are commonly analysed using compartmental models, and many variations of such models have been used for analysing and predicting the evolution of the COVID-19 pandemic. In this paper we survey the different models proposed in the literature, assembling a list of 36 model structures and assessing their ability to provide reliable information. We address the problem using the control theoretic concepts of structural identifiability and observability. Since some parameters can vary during the course of an epidemic, we consider both the constant and time-varying parameter assumptions. We analyse the structural identifiability and observability of all of the models, considering all plausible choices of outputs and time-varying parameters, which leads us to analyse 255 different model versions. We classify the models according to their structural identifiability and observability under the different assumptions and discuss the implications of the results. We also illustrate with an example several alternative ways of remedying the lack of observability of a model. Our analyses provide guidelines for choosing the most informative model for each purpose, taking into account the available knowledge and measurements.

13.
J R Soc Interface ; 16(156): 20190043, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31266417

RESUMO

In this paper, we address the system identification problem in the context of biological modelling. We present and demonstrate a methodology for (i) assessing the possibility of inferring the unknown quantities in a dynamic model and (ii) effectively estimating them from output data. We introduce the term Full Input-State-Parameter Observability (FISPO) analysis to refer to the simultaneous assessment of state, input and parameter observability (note that parameter observability is also known as identifiability). This type of analysis has often remained elusive in the presence of unmeasured inputs. The method proposed in this paper can be applied to a general class of nonlinear ordinary differential equations models. We apply this approach to three models from the recent literature. First, we determine whether it is theoretically possible to infer the states, parameters and inputs, taking only the model equations into account. When this analysis detects deficiencies, we reformulate the model to make it fully observable. Then we move to numerical scenarios and apply an optimization-based technique to estimate the states, parameters and inputs. The results demonstrate the feasibility of an integrated strategy for (i) analysing the theoretical possibility of determining the states, parameters and inputs to a system and (ii) solving the practical problem of actually estimating their values.


Assuntos
Modelos Biológicos , Dinâmica não Linear , Biologia de Sistemas
14.
Bioinformatics ; 35(5): 830-838, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30816929

RESUMO

MOTIVATION: Kinetic models contain unknown parameters that are estimated by optimizing the fit to experimental data. This task can be computationally challenging due to the presence of local optima and ill-conditioning. While a variety of optimization methods have been suggested to surmount these issues, it is difficult to choose the best one for a given problem a priori. A systematic comparison of parameter estimation methods for problems with tens to hundreds of optimization variables is currently missing, and smaller studies provided contradictory findings. RESULTS: We use a collection of benchmarks to evaluate the performance of two families of optimization methods: (i) multi-starts of deterministic local searches and (ii) stochastic global optimization metaheuristics; the latter may be combined with deterministic local searches, leading to hybrid methods. A fair comparison is ensured through a collaborative evaluation and a consideration of multiple performance metrics. We discuss possible evaluation criteria to assess the trade-off between computational efficiency and robustness. Our results show that, thanks to recent advances in the calculation of parametric sensitivities, a multi-start of gradient-based local methods is often a successful strategy, but a better performance can be obtained with a hybrid metaheuristic. The best performer combines a global scatter search metaheuristic with an interior point local method, provided with gradients estimated with adjoint-based sensitivities. We provide an implementation of this method to render it available to the scientific community. AVAILABILITY AND IMPLEMENTATION: The code to reproduce the results is provided as Supplementary Material and is available at Zenodo https://doi.org/10.5281/zenodo.1304034. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Benchmarking , Software , Algoritmos , Cinética , Modelos Biológicos
15.
IEEE/ACM Trans Comput Biol Bioinform ; 15(4): 1193-1202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28981423

RESUMO

Inferring the structure of unknown cellular networks is a main challenge in computational biology. Data-driven approaches based on information theory can determine the existence of interactions among network nodes automatically. However, the elucidation of certain features-such as distinguishing between direct and indirect interactions or determining the direction of a causal link-requires estimating information-theoretic quantities in a multidimensional space. This can be a computationally demanding task, which acts as a bottleneck for the application of elaborate algorithms to large-scale network inference problems. The computational cost of such calculations can be alleviated by the use of compiled programs and parallelization. To this end, we have developed PREMER (Parallel Reverse Engineering with Mutual information & Entropy Reduction), a software toolbox that can run in parallel and sequential environments. It uses information theoretic criteria to recover network topology and determine the strength and causality of interactions, and allows incorporating prior knowledge, imputing missing data, and correcting outliers. PREMER is a free, open source software tool that does not require any commercial software. Its core algorithms are programmed in FORTRAN 90 and implement OpenMP directives. It has user interfaces in Python and MATLAB/Octave, and runs on Windows, Linux, and OSX (https://sites.google.com/site/premertoolbox/).


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Software , Algoritmos , Simulação por Computador , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Teoria da Informação
16.
PLoS Comput Biol ; 13(11): e1005878, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29186132

RESUMO

The concept of dynamical compensation has been recently introduced to describe the ability of a biological system to keep its output dynamics unchanged in the face of varying parameters. However, the original definition of dynamical compensation amounts to lack of structural identifiability. This is relevant if model parameters need to be estimated, as is often the case in biological modelling. Care should we taken when using an unidentifiable model to extract biological insight: the estimated values of structurally unidentifiable parameters are meaningless, and model predictions about unmeasured state variables can be wrong. Taking this into account, we explore alternative definitions of dynamical compensation that do not necessarily imply structural unidentifiability. Accordingly, we show different ways in which a model can be made identifiable while exhibiting dynamical compensation. Our analyses enable the use of the new concept of dynamical compensation in the context of parameter identification, and reconcile it with the desirable property of structural identifiability.


Assuntos
Retroalimentação Fisiológica , Modelos Biológicos , Biologia de Sistemas , Humanos
17.
BMC Syst Biol ; 11(1): 54, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28476119

RESUMO

BACKGROUND: Kinetic models of biochemical systems usually consist of ordinary differential equations that have many unknown parameters. Some of these parameters are often practically unidentifiable, that is, their values cannot be uniquely determined from the available data. Possible causes are lack of influence on the measured outputs, interdependence among parameters, and poor data quality. Uncorrelated parameters can be seen as the key tuning knobs of a predictive model. Therefore, before attempting to perform parameter estimation (model calibration) it is important to characterize the subset(s) of identifiable parameters and their interplay. Once this is achieved, it is still necessary to perform parameter estimation, which poses additional challenges. METHODS: We present a methodology that (i) detects high-order relationships among parameters, and (ii) visualizes the results to facilitate further analysis. We use a collinearity index to quantify the correlation between parameters in a group in a computationally efficient way. Then we apply integer optimization to find the largest groups of uncorrelated parameters. We also use the collinearity index to identify small groups of highly correlated parameters. The results files can be visualized using Cytoscape, showing the identifiable and non-identifiable groups of parameters together with the model structure in the same graph. RESULTS: Our contributions alleviate the difficulties that appear at different stages of the identifiability analysis and parameter estimation process. We show how to combine global optimization and regularization techniques for calibrating medium and large scale biological models with moderate computation times. Then we evaluate the practical identifiability of the estimated parameters using the proposed methodology. The identifiability analysis techniques are implemented as a MATLAB toolbox called VisId, which is freely available as open source from GitHub ( https://github.com/gabora/visid ). CONCLUSIONS: Our approach is geared towards scalability. It enables the practical identifiability analysis of dynamic models of large size, and accelerates their calibration. The visualization tool allows modellers to detect parts that are problematic and need refinement or reformulation, and provides experimentalists with information that can be helpful in the design of new experiments.


Assuntos
Modelos Biológicos , Biologia de Sistemas , Arabidopsis/fisiologia , Relógios Circadianos , Cinética , Modelos Lineares , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
18.
PLoS Comput Biol ; 13(2): e1005379, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28166222

RESUMO

Despite significant efforts and remarkable progress, the inference of signaling networks from experimental data remains very challenging. The problem is particularly difficult when the objective is to obtain a dynamic model capable of predicting the effect of novel perturbations not considered during model training. The problem is ill-posed due to the nonlinear nature of these systems, the fact that only a fraction of the involved proteins and their post-translational modifications can be measured, and limitations on the technologies used for growing cells in vitro, perturbing them, and measuring their variations. As a consequence, there is a pervasive lack of identifiability. To overcome these issues, we present a methodology called SELDOM (enSEmbLe of Dynamic lOgic-based Models), which builds an ensemble of logic-based dynamic models, trains them to experimental data, and combines their individual simulations into an ensemble prediction. It also includes a model reduction step to prune spurious interactions and mitigate overfitting. SELDOM is a data-driven method, in the sense that it does not require any prior knowledge of the system: the interaction networks that act as scaffolds for the dynamic models are inferred from data using mutual information. We have tested SELDOM on a number of experimental and in silico signal transduction case-studies, including the recent HPN-DREAM breast cancer challenge. We found that its performance is highly competitive compared to state-of-the-art methods for the purpose of recovering network topology. More importantly, the utility of SELDOM goes beyond basic network inference (i.e. uncovering static interaction networks): it builds dynamic (based on ordinary differential equation) models, which can be used for mechanistic interpretations and reliable dynamic predictions in new experimental conditions (i.e. not used in the training). For this task, SELDOM's ensemble prediction is not only consistently better than predictions from individual models, but also often outperforms the state of the art represented by the methods used in the HPN-DREAM challenge.


Assuntos
Algoritmos , Engenharia Metabólica/métodos , Modelos Biológicos , Proteoma/metabolismo , Transdução de Sinais/fisiologia , Animais , Simulação por Computador , Humanos , Análise do Fluxo Metabólico
19.
Math Biosci ; 282: 147-161, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27789352

RESUMO

Dynamic models of biochemical networks are often formulated as sets of non-linear ordinary differential equations, whose states are the concentrations or abundances of the network components. They typically have a large number of kinetic parameters, which must be determined by calibrating the model with experimental data. In recent years it has been suggested that dynamic systems biology models are universally sloppy, meaning that the values of some parameters can be perturbed by several orders of magnitude without causing significant changes in the model output. This observation has prompted calls for focusing on model predictions rather than on parameters. In this work we examine the concept of sloppiness, investigating its links with the long-established notions of structural and practical identifiability. By analysing a set of case studies we show that sloppiness is not equivalent to lack of identifiability, and that sloppy models can be identifiable. Thus, using sloppiness to draw conclusions about the possibility of estimating parameter values can be misleading. Instead, structural and practical identifiability analyses are better tools for assessing the confidence in parameter estimates. Furthermore, we show that, when designing new experiments to decrease parametric uncertainty, designs that optimize practical identifiability criteria are more informative than those that minimize sloppiness.


Assuntos
Modelos Biológicos , Biologia de Sistemas
20.
PLoS Comput Biol ; 12(10): e1005153, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27792726

RESUMO

A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas.


Assuntos
Algoritmos , Modelos Biológicos , Dinâmica não Linear , Linguagens de Programação , Software , Biologia de Sistemas/métodos , Animais , Simulação por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...