Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238302

RESUMO

The glenohumeral joint (GHJ) is one of the most critical structures in the shoulder complex. Lesions of the superior labral anterior to posterior (SLAP) cause instability at the joint. Isolated Type II of this lesion is the most common, and its treatment is still under debate. Therefore, this study aimed to determine the biomechanical behavior of soft tissues on the anterior bands of the glenohumeral joint with an Isolated Type II SLAP lesion. Segmentation tools were used to build a 3D model of the shoulder joint from CT-scan and MRI images. The healthy model was studied using finite element analysis. Validation was conducted with a numerical model using ANOVA, and no significant differences were shown (p = 0.47). Then, an Isolated Type II SLAP lesion was produced in the model, and the joint was subjected to 30 degrees of external rotation. A comparison was made for maximum principal strains in the healthy and the injured models. Results revealed that the strain distribution of the anterior bands of the synovial capsule is similar between a healthy and an injured shoulder (p = 0.17). These results demonstrated that GHJ does not significantly deform for an Isolated Type II SLAP lesion subjected to 30-degree external rotation in abduction.

2.
J Orthop Res ; 31(10): 1507-13, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23775981

RESUMO

This study investigated the internal fluid pressure of human cadaver meniscal root attachments. A pressure micro-sensor was implanted inside each attachment site. Tibiofemoral joints were compressed to 2× body weight at various flexion angles and pressure recorded for 20 min. The anterior cruciate ligament (ACL) was then transected and joints retested. Lastly, a longitudinal incision of the lateral posterior (LP) horn was made and the joint retested. Ramp pressure was defined as the pressure when 2× body weight was reached, and equilibrium pressure was recorded at the end of the hold period. The medial posterior (MP) attachment was subjected to greater ramp pressure than the medial anterior (p = 0.002) and greater equilibrium pressure than all other root attachment sites (p < 0.001). Flexion angle had a significant effect on pressure as full extension was greatest at ramp (p = 0.040). Transection of the ACL decreased ramp pressure in the LP attachment (p = 0.025) and increased equilibrium pressure (p = 0.031) in the MP attachment. The results suggest that repair strategies should be developed which reconstruct the MP attachments to be sufficient to withstand large pressures. Furthermore, since meniscal pressure is highest at full extension, this fact should be considered when prescribing rehabilitation following repair of an attachment.


Assuntos
Líquidos Corporais/fisiologia , Articulação do Joelho/fisiologia , Meniscos Tibiais/fisiologia , Suporte de Carga/fisiologia , Adulto , Fenômenos Biomecânicos/fisiologia , Cadáver , Fêmur/fisiologia , Humanos , Pessoa de Meia-Idade , Fibras Ópticas , Pressão , Amplitude de Movimento Articular/fisiologia , Tíbia/fisiologia
3.
J Biomech ; 44(3): 413-8, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20980006

RESUMO

Meniscal attachments are ligamentous tissues anchoring the menisci to the underlying subchondral bone. Currently little is known about the behavior of meniscal attachments, with only a few studies quantitatively documenting their properties. The objective of this study was to quantify and compare the tensile mechanical properties of human meniscal attachments in the transverse direction, curve fit experimental Cauchy stress-stretch data to evaluate the hyperelastic behavior, and couple these results with previously obtained longitudinal data to generate a more complete constitutive model. Meniscal attachment specimens were tested using a uniaxial tension test with the collagen fibers oriented perpendicular to the loading axis. Tests were run until failure and load-optical displacement data was recorded for each test. The medial posterior attachment was shown to have a significantly greater elastic modulus (6.42±0.78 MPa) and ultimate stress (1.73±0.32 MPa) when compared to the other three attachments. The Mooney-Rivlin material model was selected as the best fit for the transverse data and used in conjunction with the longitudinal data. A novel computational approach to determining the transition point between the toe and linear regions is presented for the hyperelastic stress-stretch curves. Results from piece-wise non-linear longitudinal curve fitting correlate well with previous linear elastic and SEM findings. These data can be used to advance the design of meniscal replacements and improve knee joint finite element models.


Assuntos
Articulação do Joelho/fisiologia , Ligamentos/fisiologia , Meniscos Tibiais/fisiologia , Idoso , Módulo de Elasticidade/fisiologia , Análise de Elementos Finitos , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Mecânico , Resistência à Tração/fisiologia
4.
Connect Tissue Res ; 51(5): 327-36, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20388017

RESUMO

Qualitative analysis of meniscal attachments from five human knees was completed using scanning electron microscopy (SEM). In addition, quantitative analysis to determine the collagen crimping angle and length in each attachment was done. Morphological differences were revealed between the distinct zones of the attachments from the meniscus transition to the bony insertion. Collagen fibers near to the meniscus appeared inhomogeneous in a radial cross-section view. The sheath surrounding the fibers seemed loose compared with the membrane wrapping around the fibers in the menisci. The midsubstance of human meniscal attachments was composed of collagen fibers running parallel to the longitudinal axis, with a few fibers running obliquely, and others transversely. The bony insertion showed that the crimping pattern vanishes as the collagen fibers approach the fibrocartilagenous enthesis. There were no differences between attachments for crimping angle or length. Collagen crimping angles for all attachments were similar with values of approximately 22°. Crimp length values tended to be smaller for the medial attachments (MA: 4.76 ± 1.95 µm; MP: 3.72 ± 2.31 µm) and higher for the lateral (LA: 6.49 ± 2.34 µm, LP: 6.91 ± 2.29 µm). SEM was demonstrated to be an effective method for revealing the morphology of fibrous connective tissue. The data of collagen fiber length and angle found in this study will allow for better development of microstructural models of meniscal attachments. This study will help to better understand the relation between the morphology and the architecture of collagen and the mechanical behavior of meniscal attachments.


Assuntos
Colágeno/ultraestrutura , Tecido Conjuntivo/ultraestrutura , Articulação do Joelho/ultraestrutura , Meniscos Tibiais/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Idoso , Feminino , Fibrocartilagem/ultraestrutura , Humanos , Ligamentos/ultraestrutura , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular , Estresse Mecânico , Tíbia/ultraestrutura
5.
J Biomech ; 43(3): 463-8, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19896669

RESUMO

Meniscectomies have been shown to lead to osteoarthritis and the success of meniscal replacements remains questionable. It has been suggested that the success of a meniscal replacement is dependent on several factors, one of which is the secure fixation and firm attachment of the replacement to the tibial plateau at the horn locations. To aid in the development of meniscal replacements, the objectives of the current study were to determine the time-dependent and failure properties of human meniscal attachments. In contrast to the time-dependent tests, during uniaxial failure testing a charge-coupled video camera was used to document the local strain and linear modulus distribution across the surface of the attachments. The lateral attachments were statistically smaller in cross-sectional area and longer than the medial attachments. The anterior attachments were statistically longer and had a smaller cross-sectional area than the posterior attachments. From the stress relaxation tests, the load and stress relaxation rates of the medial anterior attachment were statistically greater than the medial posterior attachment. There were no significant differences in the creep, structural properties or the ultimate stress between the different attachments. Ultimate strain varied between attachments, as well as along the length of the attachment. Ultimate strain in the meniscus region (10.4+/-6.9%) and mid-substance region (12.7+/-16.4%) was smaller than the bony insertion region (32.2+/-21.5%). The lateral and anterior attachments were also found to have statistically greater strain than the medial and posterior attachments, respectively. The linear modulus was statistically weaker in the bony insertion region (69.7+/-33.7MPa) compared to the meniscus region (153+/-123MPa) and mid-substance region (195+/-121MPa). Overall the anterior attachments (169+/-130MPa) were also found to be statistically stronger than the posterior attachments (90.8+/-64.9MPa). These results can be used to help design tissue-engineered replacement menisci and their insertions and show the differences in material properties between attachments, as well as within an attachment.


Assuntos
Meniscos Tibiais/anatomia & histologia , Meniscos Tibiais/fisiologia , Modelos Biológicos , Idoso , Simulação por Computador , Módulo de Elasticidade/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resistência à Tração/fisiologia , Fatores de Tempo
6.
Ann Biomed Eng ; 36(1): 123-31, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17999192

RESUMO

Little quantitative data is available on the structure of meniscal attachments. Therefore, as an aid to designing meniscal replacements as well as a possible explanation for mechanical behavior, this study was designed to further the knowledge of the microstructure and biochemistry of native meniscal attachments. Bovine medial meniscal attachments (the external ligamentous portion as well as the transition zones at the bony insertion) were removed and prepared for microstructural evaluation. After embedding in paraffin, the samples were sliced on a microtome and stained for quantitative analysis. The anterior and posterior insertion sites are known to contain three zones: subchondral bone, calcified fibrocartilage, and uncalcified fibrocartilage. Additionally, others have shown that the anterior insertion site contains a ligamentous zone. The insertion zones were further divided into proximal, middle, and distal zones. The posterior attachment's insertion site had a significantly greater thickness of interdigitations, subchondral bone, uncalcified fibrocartilage, and calcified fibrocartilage zone thickness compared to the anterior attachment insertion. The anterior attachment's insertion had the greatest GAG fraction in each zone when compared to the posterior attachment's insertion. GAG fraction decreased from the meniscus to the subchondral bone. Both GAG fraction and normalized thickness varied within a given zone, decreasing from the distal to proximal regions in both the anterior and posterior attachments' insertion zones. Crimp frequency of the collagen fibrils in the external ligamentous portion of the tissue was homogeneous along the length. The findings from this study agree with previously published material property data on the medial meniscal attachments, and could be used in the future to design methods of attachment for tissue engineered replacement menisci.


Assuntos
Colágeno/metabolismo , Colágeno/ultraestrutura , Glicosaminoglicanos/metabolismo , Meniscos Tibiais/citologia , Meniscos Tibiais/fisiologia , Animais , Bovinos , Técnicas In Vitro , Distribuição Tecidual
7.
J Biomech ; 40(12): 2655-62, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17359982

RESUMO

The menisci are frequently injured due to both degeneration and traumatic tearing. It has been suggested that the success of a meniscal replacement is dependent on several factors, one of which is the secure fixation and firm attachment of the replacement to the tibial plateau. Therefore, the objectives of the current study were to (1) determine the failure properties of the meniscal horn attachments, and (2) determine the strain distribution over their surfaces. Eight bovine knee joints were used to study the mechanical response of the meniscal attachments. Three meniscal attachments from one knee of each animal were tested in uniaxial tension at 2%/s to determine the load deformation response. During the tests, the samples were marked and local strain distributions were determined with a video extensometer. The linear modulus of the medial anterior attachment (154+/-134 MPa) was significantly less than both the medial posterior (248+/-179 MPa, p=0.0111) and the lateral anterior attachment (281+/-214 MPa, p=0.0007). Likewise, the ultimate strain for the medial anterior attachments (13.5+/-8.8%) was significantly less than the medial posterior (23+/-13%, p<0.0001) and the lateral anterior attachment (20.3+/-11.1%, p=0.0033). There were no significant differences in the structural properties or ultimate stress between the meniscal attachments (p>0.05). No significant differences in ultimate strain or moduli across the surface of the attachments were noted. Based on the data obtained, a meniscal replacement would need different moduli for each of the different attachments. However, the attachments appear to be homogeneous.


Assuntos
Traumatismos do Joelho/fisiopatologia , Meniscos Tibiais/fisiopatologia , Animais , Bovinos , Ligamentos Articulares , Estresse Mecânico , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...