Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circulation ; 148(25): 2038-2057, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37965787

RESUMO

BACKGROUND: Strategies to increase cellular NAD+ (oxidized nicotinamide adenine dinucleotide) level have prevented cardiac dysfunction in multiple models of heart failure, but molecular mechanisms remain unclear. Little is known about the benefits of NAD+-based therapies in failing hearts after the symptoms of heart failure have appeared. Most pretreatment regimens suggested mechanisms involving activation of sirtuin, especially Sirt3 (sirtuin 3), and mitochondrial protein acetylation. METHODS: We induced cardiac dysfunction by pressure overload in SIRT3-deficient (knockout) mice and compared their response with nicotinamide riboside chloride treatment with wild-type mice. To model a therapeutic approach, we initiated the treatment in mice with established cardiac dysfunction. RESULTS: We found nicotinamide riboside chloride improved mitochondrial function and blunted heart failure progression. Similar benefits were observed in wild-type and knockout mice. Boosting NAD+ level improved the function of NAD(H) redox-sensitive SDR (short-chain dehydrogenase/reductase) family proteins. Upregulation of Mrpp2 (mitochondrial ribonuclease P protein 2), a multifunctional SDR protein and a subunit of mitochondrial ribonuclease P, improves mitochondrial DNA transcripts processing and electron transport chain function. Activation of SDRs in the retinol metabolism pathway stimulates RXRα (retinoid X receptor α)/PPARα (proliferator-activated receptor α) signaling and restores mitochondrial oxidative metabolism. Downregulation of Mrpp2 and impaired mitochondrial ribonuclease P were found in human failing hearts, suggesting a shared mechanism of defective mitochondrial biogenesis in mouse and human heart failure. CONCLUSIONS: These findings identify SDR proteins as important regulators of mitochondrial function and molecular targets of NAD+-based therapy. Furthermore, the benefit is observed regardless of Sirt3-mediated mitochondrial protein deacetylation, a widely held mechanism for NAD+-based therapy for heart failure. The data also show that NAD+-based therapy can be useful in pre-existing heart failure.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Sirtuína 3 , Camundongos , Humanos , Animais , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , NAD/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Ribonuclease P/metabolismo , Cloretos/metabolismo , Insuficiência Cardíaca/metabolismo , Mitocôndrias/metabolismo , Cardiopatias/metabolismo , Camundongos Knockout , Oxirredutases/metabolismo
2.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36480284

RESUMO

Innate immune cells play important roles in tissue injury and repair following acute myocardial infarction (MI). Although reprogramming of macrophage metabolism has been observed during inflammation and resolution phases, the mechanistic link to macrophage phenotype is not fully understood. In this study, we found that myeloid-specific deletion (mKO) of mitochondrial complex I protein, encoded by Ndufs4, reproduced the proinflammatory metabolic profile in macrophages and exaggerated the response to LPS. Moreover, mKO mice showed increased mortality, poor scar formation, and worsened cardiac function 30 days after MI. We observed a greater inflammatory response in mKO mice on day 1 followed by increased cell death of infiltrating macrophages and blunted transition to the reparative phase during post-MI days 3-7. Efferocytosis was impaired in mKO macrophages, leading to lower expression of antiinflammatory cytokines and tissue repair factors, which suppressed the proliferation and activation of myofibroblasts in the infarcted area. Mitochondria-targeted ROS scavenging rescued these impairments, improved myofibroblast function in vivo, and reduced post-MI mortality in mKO mice. Together these results reveal a critical role of mitochondria in inflammation resolution and tissue repair via modulation of efferocytosis and crosstalk with fibroblasts. These findings have potential significance for post-MI recovery as well as for other inflammatory conditions.


Assuntos
Macrófagos , Mitocôndrias , Infarto do Miocárdio , Animais , Camundongos , Complexo I de Transporte de Elétrons/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Fagocitose
3.
Nat Cardiovasc Res ; 1(9): 855-866, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36405497

RESUMO

Advancements in cross-linking mass spectrometry (XL-MS) bridge the gap between purified systems and native tissue environments, allowing the detection of protein structural interactions in their native state. Here we use isobaric quantitative protein interaction reporter technology (iqPIR) to compare the mitochondria protein interactomes in healthy and hypertrophic murine hearts, 4 weeks post-transaortic constriction. The failing heart interactome includes 588 statistically significant cross-linked peptide pairs altered in the disease condition. We observed an increase in the assembly of ketone oxidation oligomers corresponding to an increase in ketone metabolic utilization; remodeling of NDUA4 interaction in Complex IV, likely contributing to impaired mitochondria respiration; and conformational enrichment of ADP/ATP carrier ADT1, which is non-functional for ADP/ATP translocation but likely possesses non-selective conductivity. Our application of quantitative cross-linking technology in cardiac tissue provides molecular-level insights into the complex mitochondria remodeling in heart failure while bringing forth new hypotheses for pathological mechanisms.

4.
J Clin Invest ; 132(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575090

RESUMO

In hypertrophied and failing hearts, fuel metabolism is reprogrammed to increase glucose metabolism, especially glycolysis. This metabolic shift favors biosynthetic function at the expense of ATP production. Mechanisms responsible for the switch are poorly understood. We found that inhibitory factor 1 of the mitochondrial FoF1-ATP synthase (ATPIF1), a protein known to inhibit ATP hydrolysis by the reverse function of ATP synthase during ischemia, was significantly upregulated in pathological cardiac hypertrophy induced by pressure overload, myocardial infarction, or α-adrenergic stimulation. Chemical cross-linking mass spectrometry analysis of hearts hypertrophied by pressure overload suggested that increased expression of ATPIF1 promoted the formation of FoF1-ATP synthase nonproductive tetramer. Using ATPIF1 gain- and loss-of-function cell models, we demonstrated that stalled electron flow due to impaired ATP synthase activity triggered mitochondrial ROS generation, which stabilized HIF1α, leading to transcriptional activation of glycolysis. Cardiac-specific deletion of ATPIF1 in mice prevented the metabolic switch and protected against the pathological remodeling during chronic stress. These results uncover a function of ATPIF1 in nonischemic hearts, which gives FoF1-ATP synthase a critical role in metabolic rewiring during the pathological remodeling of the heart.


Assuntos
Glicólise , ATPases Mitocondriais Próton-Translocadoras , Proteínas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Camundongos , Miocárdio/metabolismo , Ativação Transcricional , Regulação para Cima , Proteína Inibidora de ATPase
5.
J Mol Cell Cardiol ; 158: 1-10, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33989657

RESUMO

BACKGROUND: Reduced fatty acid oxidation (FAO) is a hallmark of metabolic remodeling in heart failure. Enhancing mitochondrial long-chain fatty acid uptake by Acetyl-CoA carboxylase 2 (ACC2) deletion increases FAO and prevents cardiac dysfunction during chronic stresses, but therapeutic efficacy of this approach has not been determined. METHODS: Male and female ACC2 f/f-MCM (ACC2KO) and their respective littermate controls were subjected to chronic pressure overload by TAC surgery. Tamoxifen injection 3 weeks after TAC induced ACC2 deletion and increased FAO in ACC2KO mice with pathological hypertrophy. RESULTS: ACC2 deletion in mice with pre-existing cardiac pathology promoted FAO in female and male hearts, but improved cardiac function only in female mice. In males, pressure overload caused a downregulation in the mitochondrial oxidative function. Stimulating FAO by ACC2 deletion caused unproductive acyl-carnitine accumulation, which failed to improve cardiac energetics. In contrast, mitochondrial oxidative capacity was sustained in female pressure overloaded hearts and ACC2 deletion improved myocardial energetics. Mechanistically, we revealed a sex-dependent regulation of PPARα signaling pathway in heart failure, which accounted for the differential response to ACC2 deletion. CONCLUSION: Metabolic remodeling in the failing heart is sex-dependent which could determine the response to metabolic intervention. The findings suggest that both mitochondrial oxidative capacity and substrate preference should be considered for metabolic therapy of heart failure.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Ácidos Graxos/metabolismo , Insuficiência Cardíaca/metabolismo , PPAR alfa/metabolismo , Transdução de Sinais/genética , Acetil-CoA Carboxilase/genética , Animais , Carnitina/análogos & derivados , Carnitina/metabolismo , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Feminino , Deleção de Genes , Insuficiência Cardíaca/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/metabolismo , Oxirredução , Fatores Sexuais , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/administração & dosagem
6.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33554956

RESUMO

A hallmark of impaired myocardial energetics in failing hearts is the downregulation of the creatine kinase (CK) system. In heart failure patients and animal models, myocardial phosphocreatine content and the flux of the CK reaction are negatively correlated with the outcome of heart failure. While decreased CK activity is highly reproducible in failing hearts, the underlying mechanisms remains elusive. Here, we report an inverse relationship between the activity and acetylation of CK muscle form (CKM) in human and mouse failing hearts. Hyperacetylation of recombinant CKM disrupted MM homodimer formation and reduced enzymatic activity, which could be reversed by sirtuin 2 treatment. Mass spectrometry analysis identified multiple lysine residues on the MM dimer interface, which were hyperacetylated in the failing hearts. Molecular modeling of CK MM homodimer suggested that hyperacetylation prevented dimer formation through interfering salt bridges within and between the 2 monomers. Deacetylation by sirtuin 2 reduced acetylation of the critical lysine residues, improved dimer formation, and restored CKM activity from failing heart tissue. These findings reveal a potentially novel mechanism in the regulation of CK activity and provide a potential target for improving high-energy phosphoryl transfer in heart failure.


Assuntos
Creatina Quinase Forma MM/metabolismo , Insuficiência Cardíaca/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Creatina Quinase Forma MM/química , Creatina Quinase Forma MM/genética , Modelos Animais de Doenças , Metabolismo Energético , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos da Linhagem 129 , Modelos Moleculares , Miocárdio/metabolismo , Conformação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sirtuína 2/metabolismo , Sirtuína 2/farmacologia
7.
Circulation ; 142(10): 983-997, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32597196

RESUMO

BACKGROUND: Increased fatty acid oxidation (FAO) has long been considered a culprit in the development of obesity/diabetes mellitus-induced cardiomyopathy. However, enhancing cardiac FAO by removing the inhibitory mechanism of long-chain fatty acid transport into mitochondria via deletion of acetyl coenzyme A carboxylase 2 (ACC2) does not cause cardiomyopathy in nonobese mice, suggesting that high FAO is distinct from cardiac lipotoxicity. We hypothesize that cardiac pathology-associated obesity is attributable to the imbalance of fatty acid supply and oxidation. Thus, we here seek to determine whether further increasing FAO by inducing ACC2 deletion prevents obesity-induced cardiomyopathy, and if so, to elucidate the underlying mechanisms. METHODS: We induced high FAO in adult mouse hearts by cardiac-specific deletion of ACC2 using a tamoxifen-inducible model (ACC2 iKO). Control and ACC2 iKO mice were subjected to high-fat diet (HFD) feeding for 24 weeks to induce obesity. Cardiac function, mitochondria function, and mitophagy activity were examined. RESULTS: Despite both control and ACC2 iKO mice exhibiting a similar obese phenotype, increasing FAO oxidation by deletion of ACC2 prevented HFD-induced cardiac dysfunction, pathological remodeling, and mitochondria dysfunction, as well. Similarly, increasing FAO by knockdown of ACC2 prevented palmitate-induced mitochondria dysfunction and cardiomyocyte death in vitro. Furthermore, HFD suppressed mitophagy activity and caused damaged mitochondria to accumulate in the heart, which was attenuated, in part, in the ACC2 iKO heart. Mechanistically, ACC2 iKO prevented HFD-induced downregulation of parkin. During stimulation for mitophagy, mitochondria-localized parkin was severely reduced in control HFD-fed mouse heart, which was restored, in part, in ACC2 iKO HFD-fed mice. CONCLUSIONS: These data show that increasing cardiac FAO alone does not cause cardiac dysfunction, but protects against cardiomyopathy in chronically obese mice. The beneficial effect of enhancing cardiac FAO in HFD-induced obesity is mediated, in part, by the maintenance of mitochondria function through regulating parkin-mediated mitophagy. Our findings also suggest that targeting the parkin-dependent mitophagy pathway could be an effective strategy against the development of obesity-induced cardiomyopathy.


Assuntos
Cardiomiopatias/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitofagia/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitofagia/genética , Oxirredução/efeitos dos fármacos , Ubiquitina-Proteína Ligases/genética
8.
J Mol Cell Cardiol ; 146: 1-11, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32592696

RESUMO

High fatty acid oxidation (FAO) is associated with lipotoxicity, but whether it causes lipotoxic cardiomyopathy remains controversial. Molecular mechanisms that may be responsible for FAO-induced lipotoxic cardiomyopathy are also elusive. In this study, increasing FAO by genetic deletion of acetyl-CoA carboxylase 2 (ACC2) did not induce cardiac dysfunction after 16 weeks of high fat diet (HFD) feeding. This suggests that increasing FAO, per se, does not cause metabolic cardiomyopathy in obese mice. We compared transcriptomes of control and ACC2 deficient mouse hearts under chow- or HFD-fed conditions. ACC2 deletion had a significant impact on the global transcriptome including downregulation of the peroxisome proliferator-activated receptors (PPARs) signaling and fatty acid degradation pathways. Increasing fatty acids by HFD feeding normalized expression of fatty acid degradation genes in ACC2 deficient mouse hearts to the same level as the control mice. In contrast, cardiac transcriptome analysis of the lipotoxic mouse model (db/db) showed an upregulation of PPARs signaling and fatty acid degradation pathways. Our results suggest that enhancing FAO by genetic deletion of ACC2 negatively regulates PPARs signaling through depleting endogenous PPAR ligands, which can serve as a negative feedback mechanism to prevent excess activation of PPAR signaling under non-obese condition. In obesity, excessive lipid availability negates the feedback mechanism resulting in over activation of PPAR cascade, thus contributes to the development of cardiac lipotoxicity.


Assuntos
Ácidos Graxos/metabolismo , Miocárdio/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais , Acetil-CoA Carboxilase/deficiência , Acetil-CoA Carboxilase/metabolismo , Animais , Sequência de Bases , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação para Baixo/genética , Comportamento Alimentar , Camundongos Knockout , Oxirredução , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Regulação para Cima/genética
9.
Circ Res ; 126(2): 182-196, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31709908

RESUMO

RATIONALE: Hypertrophied hearts switch from mainly using fatty acids (FAs) to an increased reliance on glucose for energy production. It has been shown that preserving FA oxidation (FAO) prevents the pathological shift of substrate preference, preserves cardiac function and energetics, and reduces cardiomyocyte hypertrophy during cardiac stresses. However, it remains elusive whether substrate metabolism regulates cardiomyocyte hypertrophy directly or via a secondary effect of improving cardiac energetics. OBJECTIVE: The goal of this study was to determine the mechanisms of how preservation of FAO prevents the hypertrophic growth of cardiomyocytes. METHODS AND RESULTS: We cultured adult rat cardiomyocytes in a medium containing glucose and mixed-chain FAs and induced pathological hypertrophy by phenylephrine. Phenylephrine-induced hypertrophy was associated with increased glucose consumption and higher intracellular aspartate levels, resulting in increased synthesis of nucleotides, RNA, and proteins. These changes could be prevented by increasing FAO via deletion of ACC2 (acetyl-CoA-carboxylase 2) in phenylephrine-stimulated cardiomyocytes and in pressure overload-induced cardiac hypertrophy in vivo. Furthermore, aspartate supplementation was sufficient to reverse the antihypertrophic effect of ACC2 deletion demonstrating a causal role of elevated aspartate level in cardiomyocyte hypertrophy. 15N and 13C stable isotope tracing revealed that glucose but not glutamine contributed to increased biosynthesis of aspartate, which supplied nitrogen for nucleotide synthesis during cardiomyocyte hypertrophy. CONCLUSIONS: Our data show that increased glucose consumption is required to support aspartate synthesis that drives the increase of biomass during cardiac hypertrophy. Preservation of FAO prevents the shift of metabolic flux into the anabolic pathway and maintains catabolic metabolism for energy production, thus preventing cardiac hypertrophy and improving myocardial energetics.


Assuntos
Ácido Aspártico/biossíntese , Cardiomegalia/metabolismo , Glucose/metabolismo , Miócitos Cardíacos/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Ácido Aspártico/farmacologia , Cardiomegalia/etiologia , Células Cultivadas , Ácidos Graxos/metabolismo , Masculino , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Wistar
10.
Nat Commun ; 9(1): 2935, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050148

RESUMO

Glucose and branched-chain amino acids (BCAAs) are essential nutrients and key determinants of cell growth and stress responses. High BCAA level inhibits glucose metabolism but reciprocal regulation of BCAA metabolism by glucose has not been demonstrated. Here we show that glucose suppresses BCAA catabolism in cardiomyocytes to promote hypertrophic response. High glucose inhibits CREB stimulated KLF15 transcription resulting in downregulation of enzymes in the BCAA catabolism pathway. Accumulation of BCAA through the glucose-KLF15-BCAA degradation axis is required for the activation of mTOR signaling during the hypertrophic growth of cardiomyocytes. Restoration of KLF15 prevents cardiac hypertrophy in response to pressure overload in wildtype mice but not in mutant mice deficient of BCAA degradation gene. Thus, regulation of KLF15 transcription by glucose is critical for the glucose-BCAA circuit which controls a cascade of obligatory metabolic responses previously unrecognized for cell growth.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Glucose/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Biologia Computacional , Ecocardiografia , Células HEK293 , Humanos , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos
11.
J Nutr Biochem ; 46: 137-142, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28605665

RESUMO

High-fat diets (HFDs) are used frequently to study the development of cardiac dysfunction in animal models of obesity and diabetes. However, impairment in systolic function, often reported as declining ejection fraction, may not consistently occur in a given time frame which could be contributable to a variety of factors within the experimental design. One major factor may be the amounts of saturated and unsaturated fatty acids (FAs) that are present in the diet. To determine whether the FA content and composition were critical determinants in the development of cardiac dysfunction in response to high-fat feeding, we fed adult, male mice Western diet (45% fat, 60% saturated), Surwit diet (60% fat, 90% saturated), milk-fat-based diet (60% fat, 60% saturated) or high-fat Western diet (HFWD, 60% fat, 32% saturated) for 12 weeks. We report that neither the amount of total fat nor the ratio of saturated to unsaturated FAs in the diets differentially affects body weight and adiposity in mice. In addition, no evidence of systolic dysfunction is present after 12 weeks. Interestingly, the HFWD, with equal parts saturated, monounsaturated and polyunsaturated FAs, induces mild cardiac hypertrophy and diastolic dysfunction after 12 weeks, which coincides with elevated serum levels of arachidonic acid. Our results suggest that the dietary FA content and composition may be a primary determinant of diastolic, but not systolic, dysfunction in animal models of diet-induced obesity.


Assuntos
Cardiomegalia/etiologia , Dieta Ocidental/efeitos adversos , Ácidos Graxos/efeitos adversos , Ácidos Graxos/química , Obesidade/etiologia , Adiposidade , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Lipídeos/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Obesidade/complicações
12.
Ther Hypothermia Temp Manag ; 5(1): 40-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25514569

RESUMO

Many therapeutic hypothermia recommendations have been reported, but the information supporting them is sparse, and reveals a need for the data of target therapeutic hypothermia (TTH) from well-controlled experiments. The core temperature ≤35°C is considered as hypothermia, and 29°C is a cooling injury threshold in pig heart in vivo. Thus, an optimal protective hypothermia (OPH) should be in the range 29-35°C. This study was conducted with a pig cardiopulmonary bypass preparation to decrease the core temperature to 29-35°C range at 20 minutes before and 60 minutes during heart arrest. The left ventricular (LV) developed pressure, maximum of the first derivative of LV (dP/dtmax), cardiac power, heart rate, cardiac output, and myocardial velocity (Vmax) were recorded continuously via an LV pressure catheter and an aortic flow probe. At 20 minutes of off-pump during reperfusion after 60 minutes arrest, 17 hypothermic hearts showed that the recovery of Vmax and dP/dtmax established sigmoid curves that consisted of two plateaus: a good recovery plateau at 29-30.5°C, the function recovered to baseline level (BL) (Vmax=118.4%±3.9% of BL, LV dP/dtmax=120.7%±3.1% of BL, n=6); another poor recovery plateau at 34-35°C (Vmax=60.2%±2.8% of BL, LV dP/dtmax=28.0%±5.9% of BL, p<0.05, n=6; ), which are similar to the four normothermia arrest (37°C) hearts (Vmax=55.9%±4.8% of BL, LV dP/dtmax=24.5%±2.1% of BL, n=4). The 32-32.5°C arrest hearts showed moderate recovery (n=5). A point of inflection (around 30.5-31°C) existed at the edge of a good recovery plateau followed by a steep slope. The point presented an OPH that should be the TTH. The results are concordant with data in the mammalian hearts, suggesting that the TTH should be initiated to cool core temperature at 31°C.


Assuntos
Parada Cardíaca/terapia , Hipotermia Induzida/métodos , Animais , Soluções Cardioplégicas/farmacologia , Ponte de Artéria Coronária/métodos , Modelos Animais de Doenças , Parada Cardíaca Induzida/métodos , Hemodinâmica/fisiologia , Masculino , Projetos Piloto , Recuperação de Função Fisiológica/fisiologia , Sus scrofa , Suínos
13.
Stem Cells Int ; 2011: 679171, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21776283

RESUMO

The overall objective of cell transplantation is to repopulate postinfarction scar with contractile cells, thus improving systolic function, and to prevent or to regress the remodeling process. Direct implantation of isolated myoblasts, cardiomyocytes, and bone-marrow-derived cells has shown prospect for improved cardiac performance in several animal models and patients suffering from heart failure. However, direct implantation of cultured cells can lead to major cell loss by leakage and cell death, inappropriate integration and proliferation, and cardiac arrhythmia. To resolve these problems an approach using 3-dimensional tissue-engineered cell constructs has been investigated. Cell engineering technology has enabled scaffold-free sheet development including generation of communication between cell graft and host tissue, creation of organized microvascular network, and relatively long-term survival after in vivo transplantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...