Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38398679

RESUMO

Companion animal ownership has evolved to new exotic animals, including small mammals, posing a new public health challenge, especially due to the ability of some of these new species to harbour zoonotic bacteria, such as Salmonella, and spread their antimicrobial resistances (AMR) to other bacteria through the environment they share. Therefore, the objective of the present pilot study was to evaluate the current epidemiological AMR situation in commensal Escherichia coli and Salmonella spp., in non-traditional companion animal small mammals in the Valencia region. For this purpose, 72 rectal swabs of nine different species of small mammals were taken to assess the antimicrobial susceptibility against 28 antibiotics. A total of one Salmonella enterica serovar Telelkebir 13,23:d:e,n,z15 and twenty commensal E. coli strains were isolated. For E. coli strains, a high prevalence of AMR (85%) and MDR (82.6%) was observed, although neither of them had access outside the household. The highest AMR were observed in quinolones, one of the highest priority critically important antimicrobials (HPCIAs) in human medicine. However, no AMR were found for Salmonella. In conclusion, the results showed that small mammals' commensal E. coli poses a public health risk due to the high AMR found, and the ability of this bacterium to transmit its resistance genes to other bacteria. For this reason, this pilot study highlighted the need to establish programmes to control AMR trends in the growing population of new companion animals, as they could disseminate AMR to humans and animals through their shared environment.

2.
Front Vet Sci ; 7: 613718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33490138

RESUMO

Salmonella spp. is widely considered one of the most important zoonotic pathogens worldwide. The close contact between reptiles and their owners provides favourable conditions for the transmission of zoonotic pathogen infections, and ~6% of human salmonellosis cases are acquired after direct or indirect contact with reptiles. Moreover, antimicrobial resistance is one of the most important health threats of the twenty-first century and has been reported in Salmonella strains isolated from pet reptiles, which could entail therapeutic consequences for their owners and breeders. The aim of this study was to assess Salmonella carriage by pet reptiles in pet shops and households, and their role in the transmission of antimicrobial resistance, to inform the owners about the possible risks factors. During the period between January 2019 and December 2019, 54 reptiles from pet shops and 69 reptiles from households were sampled in the Valencian Region (Eastern Spain). Three different sample types were collected from each reptile: oral cavity, skin, and cloacal swabs. Salmonella identification was based on ISO 6579-1:2017 (Annex D), serotyped in accordance with Kauffman-White-Le-Minor technique, and antibiotic susceptibility was assessed according to Decision 2013/652. The results of this study showed that 48% of the pet reptiles examined from households and pet shops carry Salmonella spp. All the strains isolated presented resistance to at least one antibiotic, and 72% were multidrug-resistant strains, the most frequently observed resistance patterns being gentamicin-colistin and gentamicin-colistin-ampicillin. The present study demonstrates that pet reptiles could be a source of human multidrug-resistant Salmonella infection. In this context, the most optimal prevention of multidrug-resistant Salmonella infections necessarily involves strict control of the sanitary status of reptile pet shops and hygienic handling by the individual owners at home.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...