Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 854: 158682, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115394

RESUMO

Injecting ozone by means of a venturi device causes an increase in the mass transfer coefficient with respect to gas dissolution through a microdiffuser. Moreover, it was observed that significant turbidity levels are not formed (<1 NTU) when using a microdiffuser, probably due to the relatively high stirring which avoids formation of intermolecular hydrogen bonds. On the contrary, employing a venturi injector led to the production of high turbidity levels in water (up to 20 NTU). This indicates that formation of supramolecular structures causing this turbidity requires the presence of certain facilitating species which are formed through ozone decomposition mechanisms. The maximum ozone transfer takes place when operating at pH0 9.0, that is, when this value is close to the pKa and employing a dose of R = 115 mol O3/mol Pa0. Under these conditions, the degradation of paracetamol generates color, which is attributed to the presence of condensation products from pyrogallol, catechol, resorcinol, acetamide, oxalic acid and 4-aminophenol. Once paracetamol is fully degraded and solution turns colorless, turbidity grows (>20 NTU). This is attributed to formation of high molecular weight structures from 4-aminophenol and oxamide. Operating with large ozone excess (R = 500 mol O3/mol Pa0), the maximum ozone transfer rate is achieved at pH0 = 12.0. Under these conditions, the pollutant is fully removed together with water aromaticity and oxalic acid (able to form linear structures through hydrogen bonding) is detected during color development. Then, turbidity is formed due to cyclic dimer formation from acetic acid.

2.
Environ Technol ; : 1-11, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35938359

RESUMO

The oxidation of sulphamethoxazole medicine (SMX) has been studied by means of UV/H2O2 conducting at a controlled pH between 2.0 and 12.0 and oxidant ratios of 500 mol H2O2/mol SMX. It is verified that operating at pH = 2.0 the highest rates of SMX degradation (74%) and loss of aromaticity (64%) are obtained. During the process, a strong brown tint and high turbidity are generated in the water depending on the pH, as it affects the chemical speciation of the dissociable compounds. The colour intensity of the water increases from pH = 2.0 (light brown, 3.5 NTU) to a maximum value at pH = 4.0 (dark brown, 42 NTU), when the neutral SMX species is almost 100%. Under these conditions, the formation of carboxylic acids (acetic and oxalic) and nitrate ion are minor. Conducting at higher pH, hue decreases, obtaining at pH = 12.0 a light yellow water (5 NTU) when the anionic SMX predominates. Thus, the maximum formation of nitrate ion occurs under these conditions. A pseudo-first order kinetic modelling is proposed for the loss of aromaticity and colour and turbidity formation in water, where the kinetic parameters are expressed as a function of the applied pH, being the pseudo-first-order rate constants (min-1): karom=0.0005pH2-0.0106pH+0.0707; kcolour=0.0011pH2-0.02pH+0.1125 and kNTU = 0.06 min-1.

3.
Materials (Basel) ; 14(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34576439

RESUMO

This work presents an efficient method for treating industrial wastewater containing aniline and benzothiazole, which are refractory to conventional treatments. A combination of heterogeneous photocatalysis operating in a fluidised bed reactor is studied in order to increase mass transfer and reduce reaction times. This process uses a manganese dioxide catalyst supported on granular activated carbon with environmentally friendly characteristics. The manganese dioxide composite is prepared by hydrothermal synthesis on carbon Hydrodarco® 3000 with different active phase ratios. The support, the metal oxide, and the composite are characterised by performing Brunauer, Emmett, and Teller analysis, transmission electron microscopy, X-ray diffraction analysis, X-ray fluorescence analysis, UV-Vis spectroscopy by diffuse reflectance, and Fourier transform infrared spectroscopy in order to evaluate the influence of the metal oxide on the activated carbon. A composite of MnO2/GAC (3.78% in phase α-MnO2) is obtained, with a 9.4% increase in the specific surface of the initial GAC and a 12.79 nm crystal size. The effect of pH and catalyst load is studied. At a pH of 9.0 and a dose of 0.9 g L-1, a high degradation of aniline and benzothiazole is obtained, with an 81.63% TOC mineralisation in 64.8 min.

4.
Sci Rep ; 11(1): 15726, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344943

RESUMO

This work develops a kinetic model that allow to predict the water toxicity and the main degradation products concentration of aqueous solutions containing 4-chlorophenol oxidised by UV/H2O2. The kinetic model was developed grouping degradation products of similar toxicological nature: aromatics (hydroquinone, benzoquinone, 4-chlorocatechol and catechol), aliphatics (succinic, fumaric, maleic and malonic acids) and mineralised compounds (oxalic, acetic and formic acids). The degradation of each group versus time was described as a mathematical function of the rate constant of a second-order reaction involving the hydroxyl radical, the quantum yield of lump, the concentration of the hydroxyl radicals and the intensity of the emitted UV radiation. The photolytic and kinetic parameters characterising each lump were adjusted by experimental assays. The kinetic, mass balance and toxicity equations were solved using the Berkeley Madonna numerical calculation tool. Results showed that 4-chlorophenol would be completely removed during the first hour of the reaction, operating with oxidant molar ratios higher than R = 200 at pH 6.0 and UV = 24 W. Under these conditions, a decrease in the rate of total organic carbon (TOC) removal close to 50% from the initial value was observed. The solution colour, attributed to the presence of oxidation products as p-benzoquinone and hydroquinone, were oxidised to colourless species, that resulted in a decrease in the toxicity of the solutions (9.95 TU) and the aromaticity lost.

5.
Environ Technol ; 42(4): 609-617, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31264511

RESUMO

ABSTRACT Formation of oxygen in the caffeine aqueous solutions occurs through self-decomposition reactions of the hydrogen peroxide, used as an oxidant in the photo-Fenton treatment. The total concentration of hydrogen peroxide used in the treatment would be the contribution of the stoichiometric concentration that reacts with the organic matter ([H2O2]0 = 2.0 mM) and the excess of oxidant that decomposes to oxygen, through radical mechanisms, according to a ratio of 0.8164 mmol H2O2 mg-1 O2. When operating at concentrations lower than [H2O2]0 = 2.0 mM, oxygen is not released because there is no excess of oxidant. Moreover, it is verified that the ferrous ion catalyst is oxidized to ferric ion and its subsequent regeneration to ferrous ion. Working at concentrations higher than [H2O2]0 = 2.0 mM, oxygen is released in the water, verifying that the catalyst remains as ferric species, which does not regenerate. The reaction time in which oxygen evolution happpens depends on the concentration of catalyst used in the oxidation, verifying that the highest oxygen generation rates are obtained when applying [Fe]0 = 10.0 mg L-1. Once generated in the water, the maximum concentration of oxygen begins to decrease as the hydrogen peroxide is consumed, until reaching a constant value. The stages of formation and decrease of oxygen are adjusted to zero-order kinetics, estimating the kinetics constants as a function of the catalyst concentration: k f = 29.48 [Fe]0 -1.25 (mg O2 L-1 min-1) and k d = -0.006 [Fe]0 2.0 + 0.244 [Fe]0-3.69 (mg O2 L-1 min-1).


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Cafeína , Concentração de Íons de Hidrogênio , Ferro , Oxirredução , Oxigênio , Água , Poluentes Químicos da Água/análise
6.
Ultrason Sonochem ; 39: 439-445, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28732966

RESUMO

Analysis of the kinetics of aqueous phenol oxidation by a sono-Fenton process reveals that the via involving ortho-substituted intermediates prevails: catechol (25.0%), hydroquinone (7.7%) and resorcinol (0.6%). During the oxidation, water rapidly acquires color that reaches its maximum intensity at the maximum concentration of p-benzoquinone. Turbidity formation occurs at a slower rate. Oxidant dosage determines the nature of the intermediates, being trihydroxylated benzenes (pyrogallol, hydroxyhydroquinone) and muconic acid the main precursors causing turbidity. It is found that the concentration of iron species and ultrasonic waves affects the intensity of the turbidity. The pathway of (hydro)peroxo-iron(II) complexes formation is proposed. Operating with 20.0-27.8mgFe2+/kW rates leads to formation of (hydro)peroxo-iron(II) complexes, which induce high turbidity levels. These species would dissociate into ZZ-muconic acid and ferrous ions. Applying relationships around 13.9mgFe2+/kW, the formation of (hydro)peroxo-iron(III) complexes would occur, which could react with carboxylic acids (2,5-dioxo-3-hexenedioic acid). That reaction induces turbidity slower. This is due to the organic substrate reacting with two molecules of the (hydro)peroxo complex. Therefore, it is necessary to accelerate the iron regeneration, intensifying the ultrasonic irradiation. Afterwards, this complex would dissociate into maleic acid and ferric ions.

7.
Environ Technol ; 36(13-16): 1855-63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25652956

RESUMO

This work aims at establishing the contribution of the iron species to the turbidity of phenol solutions oxidized with photo-Fenton technology. During oxidation, turbidity increases linearly with time till a maximum value, according to a formation rate that shows a dependence of second order with respect to the catalyst concentration. Next, the decrease in turbidity shows the evolution of second-order kinetics, where the kinetics constant is inversely proportional to the dosage of iron, of order 0.7. The concentration of iron species is analysed at the point of maximum turbidity, as a function of the total amount of iron. Then, it is found that using dosages FeT=0-15.0 mg/L, the majority iron species was found to be ferrous ions, indicating that its concentration increases linearly with the dosage of total iron. This result may indicate that the photo-reaction of ferric ion occurs leading to the regeneration of ferrous ion. The results, obtained by operating with initial dosages FeT=15.0 and 25.0 mg/L, suggest that ferrous ion concentration decreases while ferric ion concentration increases in a complementary manner. This fact could be explained as a regeneration cycle of the iron species. The observed turbidity is generated due to the iron being added as a catalyst and the organic matter present in the system. Later, it was found that at the point of maximum turbidity, the concentration of ferrous ions is inversely proportional to the concentration of phenol and its dihydroxylated intermediates.


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Modelos Químicos , Oxigênio/química , Fenol/química , Simulação por Computador , Peróxido de Hidrogênio/efeitos da radiação , Ferro/efeitos da radiação , Cinética , Luz , Nefelometria e Turbidimetria/métodos , Oxirredução/efeitos da radiação , Soluções , Viscosidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
8.
Environ Sci Pollut Res Int ; 21(21): 12208-16, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24862479

RESUMO

Turbidity presented by phenol solutions oxidized with Fenton reagent shows the tendency of a first order intermediate kinetics. Thus, turbidity can be considered a representative parameter of the presence of intermediate oxidation species, which are generated along the decomposition of toxic and reluctant contaminants, such as phenol. Moreover, that parameter presents a linear dependence with the catalyst dosage, but is also determined by the initial contaminant load. When analyzing the oxidation mechanism of phenol, it is found that the maximum turbidity occurs when the treatment is carried out at oxidant to phenol molar ratios R = 4.0. These oxidation conditions correspond to the presence of a reaction mixture mainly composed of dihydroxylated rings, precursors of the muconic acid formation. The oxidation via "para" comprises the formation reactions of charge transfer complexes (quinhydrone), between the para-dihydroxylated intermediates (hydroquinone) and the para-substituted quinones (p-benzoquinone), which are quite unstable and reactive species, quickly decomposed into hydroxyhydroquinones. Working with oxidant ratios up to R = 6.0, the maximum observed value of turbidity in the oxidized solutions is kept almost constant. It is found that, in these conditions, the pyrogallol formation is maximal, what is generated through the degradation of ortho-species (catechol and ortho-benzoquinone) and meta-substituted (resorcinol). Operating with ratios over R = 6.0, these intermediates are decomposed into biodegradable acids, generating lower turbidity in the solution. Then, the residual turbidity is a function of the molar ratio of the ferrous ions vs. moles of oxidant utilized in the essays, that lets to estimate the stoichiometric dosage of catalyst as 20 mg/L at pH = 3.0, whereas operating in stoichiometric conditions, R = 14.0, the residual turbidity of water results almost null.


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Fenol/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Catálise , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Cinética , Nefelometria e Turbidimetria/métodos , Oxidantes/química , Oxirredução , Quinonas/química , Espectrofotometria Ultravioleta , Temperatura
9.
Environ Sci Technol ; 40(17): 5538-43, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16999137

RESUMO

Fenton reaction is a highly effective treatment for degrading phenolic compounds in an aqueous solution. However, during phenol oxidation, the oxidized water takes on a dark brown color associated with increased toxicity. Then, although phenol can be completely removed, if the oxidation process is not carried out properly, the final wastewater will be brown in color and have higher toxicity, two parameters in which legislation imposes restrictions. This paper analyzes the development of the dark color observed in the solution under oxidation treatment and formulates a reaction mechanism to explain the color generation. The experiments were carried out following the batch-wise procedure, but with the solution pH being kept constant throughout the reaction at its optimum value for phenol removal, i.e., pH 3.0. It is checked experimentally that color is formed at the beginning of the reaction in less than five minutes, and follows the kinetic-path of a reaction intermediate. During the first steps of the reaction phenol is degraded to dihydroxylated rings (catechol, resorcinol, and hydroquinone). These aromatic intermediates generate higher colored compounds such as ortho- and parabenzoquinone. On the other hand the dihydroxylated rings can react with their own quinones to generate charge-transfer complexes (quinhydrone), compounds which take on a dark color at low concentrations. Moreover, when iron reacts with hydrogen peroxide, ferric ions are generated that can be coordinated to benzene rings to produce colored metal complexes. The observed color of the solution is not a fortuitous result depending on trace components of low significance, but depends directly on the main reaction intermediates, so it is concluded that observed color depends on the level of oxidation reached. The maximum color observable during oxidation treatment (A(o)) depends only on initial phenol concentration and not on oxidant or catalyst doses.


Assuntos
Cor , Indicadores e Reagentes/química , Ferro/química , Oxidantes/química , Oxirredução , Fenóis/química , Soluções , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA