Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Neurorehabil Neural Repair ; 37(8): 577-586, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37476957

RESUMO

Despite the substantial progress in motor rehabilitation, patient involvement and motivation remain major challenges. They are typically addressed with communicational and environmental strategies, as well as with improved goal-setting procedures. Here we suggest a new research direction and framework involving Neuroeconomics principles to investigate the role of Motor Decision-Making (MDM) parameters in motivational component and motor performance in rehabilitation. We argue that investigating NE principles could bring new approaches aimed at increasing active patient engagement in the rehabilitation process by introducing more movement choice, and adapting existing goal-setting procedures. We discuss possible MDM implementation strategies and illustrate possible research directions using examples of stroke and psychiatric disorders.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/psicologia , Motivação , Movimento
2.
Neuroimage ; 276: 120178, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37236554

RESUMO

Instantaneous and peak frequency changes in neural oscillations have been linked to many perceptual, motor, and cognitive processes. Yet, the majority of such studies have been performed in sensor space and only occasionally in source space. Furthermore, both terms have been used interchangeably in the literature, although they do not reflect the same aspect of neural oscillations. In this paper, we discuss the relation between instantaneous frequency, peak frequency, and local frequency, the latter also known as spectral centroid. Furthermore, we propose and validate three different methods to extract source signals from multichannel data whose (instantaneous, local, or peak) frequency estimate is maximally correlated to an experimental variable of interest. Results show that the local frequency might be a better estimate of frequency variability than instantaneous frequency under conditions with low signal-to-noise ratio. Additionally, the source separation methods based on local and peak frequency estimates, called LFD and PFD respectively, provide more stable estimates than the decomposition based on instantaneous frequency. In particular, LFD and PFD are able to recover the sources of interest in simulations performed with a realistic head model, providing higher correlations with an experimental variable than multiple linear regression. Finally, we also tested all decomposition methods on real EEG data from a steady-state visual evoked potential paradigm and show that the recovered sources are located in areas similar to those previously reported in other studies, thus providing further validation of the proposed methods.


Assuntos
Eletroencefalografia , Magnetoencefalografia , Humanos , Eletroencefalografia/métodos , Magnetoencefalografia/métodos , Potenciais Evocados Visuais , Razão Sinal-Ruído , Algoritmos
3.
Neuroimage ; 264: 119687, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257491

RESUMO

Identical sensory stimuli can lead to different neural responses depending on the instantaneous brain state. Specifically, neural excitability in sensory areas may shape the brain´s response already from earliest cortical processing onwards. However, whether these dynamics affect a given sensory domain as a whole or occur on a spatially local level is largely unknown. We studied this in the somatosensory domain of 38 human participants with EEG, presenting stimuli to the median and tibial nerves alternatingly, and testing the co-variation of initial cortical responses in hand and foot areas, as well as their relation to pre-stimulus oscillatory states. We found that amplitude fluctuations of initial cortical responses to hand and foot stimulation - the N20 and P40 components of the somatosensory evoked potential (SEP), respectively - were not related, indicating local excitability changes in primary sensory regions. In addition, effects of pre-stimulus alpha (8-13 Hz) and beta (18-23 Hz) band amplitude on hand-related responses showed a robust somatotopic organization, thus further strengthening the notion of local excitability fluctuations. However, for foot-related responses, the spatial specificity of pre-stimulus effects was less consistent across frequency bands, with beta appearing to be more foot-specific than alpha. Connectivity analyses in source space suggested this to be due to a somatosensory alpha rhythm that is primarily driven by activity in hand regions while beta frequencies may operate in a more hand-region-independent manner. Altogether, our findings suggest spatially distinct excitability dynamics within the primary somatosensory cortex, yet with the caveat that frequency-specific processes in one sub-region may not readily generalize to other sub-regions.


Assuntos
Eletroencefalografia , Córtex Somatossensorial , Humanos , Córtex Somatossensorial/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Ritmo alfa , Mãos
4.
Appetite ; 178: 106093, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738483

RESUMO

Tyrosine (tyr), the precursor of the neurotransmitter dopamine, is known to modulate cognitive functions including executive attention. Tyr supplementation is suggested to influence dopamine-modulated cognitive performance. However, results are inconclusive regarding the presence or strength and also the direction of the association between tyr and cognitive function. This pre-registered cross-sectional analysis investigates whether diet-associated serum tyr relates to executive attention performance, and whether this relationship is moderated by differences in white matter microstructure. 59 healthy, overweight, young to middle-aged adults (20 female sex/gender group, 28.3 ± 6.6 years, BMI: 27.3 ± 1.5 kg/m2) drawn from a longitudinal study reported dietary habits, donated blood and completed diffusion-weighted brain magnetic resonance imaging and the attention network test. Main analyses were performed using linear regressions and non-parametric voxel-wise inference testing. Confirmatory analyses did neither support an association between dietary and serum tyr nor a relationship between relative serum tyr/large neutral amino acids (LNAA) levels or white matter microstructure and executive attention performance. However, exploratory analyses revealed higher tyr intake, higher serum tyr and better executive attention performance in the male sex/gender group. In addition, older age was associated with higher dietary tyr intake and lower fractional anisotropy in a widespread cluster across the brain. Finally, a positive association between relative serum tyr/LNAA level and executive attention performance was found in the male sex/gender group when accounting for age effects. Our analysis advances the field of dopamine-modulated cognitive functions by revealing sex/gender and age differences which might be diet-related. Longitudinal or intervention studies and larger sample sizes are needed to provide more reliable evidence for links between tyr and executive attention.


Assuntos
Substância Branca , Adulto , Encéfalo , Estudos Transversais , Dieta , Dopamina , Função Executiva , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Sobrepeso/patologia , Tirosina , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
6.
Sci Rep ; 11(1): 20303, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645848

RESUMO

The frontopolar cortex (FPC) contributes to tracking the reward of alternative choices during decision making, as well as their reliability. Whether this FPC function extends to reward gradients associated with continuous movements during motor learning remains unknown. We used anodal transcranial direct current stimulation (tDCS) over the right FPC to investigate its role in reward-based motor learning. Nineteen healthy human participants practiced novel sequences of finger movements on a digital piano with corresponding auditory feedback. Their aim was to use trialwise reward feedback to discover a hidden performance goal along a continuous dimension: timing. We additionally modulated the contralateral motor cortex (left M1) activity, and included a control sham stimulation. Right FPC-tDCS led to faster learning compared to lM1-tDCS and sham through regulation of motor variability. Bayesian computational modelling revealed that in all stimulation protocols, an increase in the trialwise expectation of reward was followed by greater exploitation, as shown previously. Yet, this association was weaker in lM1-tDCS suggesting a less efficient learning strategy. The effects of frontopolar stimulation were dissociated from those induced by lM1-tDCS and sham, as motor exploration was more sensitive to inferred changes in the reward tendency (volatility). The findings suggest that rFPC-tDCS increases the sensitivity of motor exploration to updates in reward volatility, accelerating reward-based motor learning.


Assuntos
Lobo Frontal/patologia , Destreza Motora , Movimento/fisiologia , Adulto , Teorema de Bayes , Comportamento , Eletrodos , Feminino , Dedos/fisiologia , Humanos , Aprendizagem , Masculino , Modelos Neurológicos , Córtex Motor , Neurociências , Desempenho Psicomotor/fisiologia , Reprodutibilidade dos Testes , Recompensa , Sensibilidade e Especificidade , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto Jovem
8.
J Endocrinol Invest ; 44(12): 2655-2664, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33881751

RESUMO

PURPOSE: Ghrelin is an orexigenic peptide hormone secreted in times of stress and hunger. It is deeply involved in the regulation of metabolism and energy homeostasis, promoting energy intake and inhibiting energy expenditure on a metabolic level. In this regard, it has in many ways antagonistic effect on the thyroid hormones, which increase metabolism and thus energy expenditure. While there is reasonable evidence of a negative association between ghrelin and hormones of the hypothalamic-pituitary-thyroid (HPT-) axis from studies in patients with thyroid dysfunction and small intervention studies, large-scale studies in healthy subjects are lacking. Therefore, we studied the relationship between total ghrelin serum levels and serum levels of the thyroid hormones in a large sample of euthyroid subjects. METHODS: Total ghrelin, thyroid-stimulating hormone (TSH), free thyroxine (fT4) and free triiodothyronine (fT3) were determined after an overnight fast in 1666 subjects participating in a population-based cross-sectional study ('LIFE') including 10,000 adults. 1012 subjects were included in this analysis. Multiple linear regression analyses were performed. RESULTS: FT3 was negatively associated with serum ghrelin; total sample: ß = - 0.0001, p < 0.001; men: ß = - 0.0002, p = 0.013; women: ß = - 0.0001, p = 0.010, adjusted for age, BMI, alcohol consumption, serum levels of TSH and fT4 and smoking status. No associations were found between ghrelin serum levels and serum levels of fT4 or TSH. CONCLUSION: This is to date the largest study investigating the relationship between total serum ghrelin and thyroid hormones. The results point to a complex interaction and should initiate further research.


Assuntos
Grelina , Glândula Tireoide/metabolismo , Tireotropina/sangue , Tiroxina/sangue , Tri-Iodotironina/sangue , Correlação de Dados , Estudos Transversais , Feminino , Grelina/sangue , Grelina/metabolismo , Voluntários Saudáveis , Homeostase/fisiologia , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Pessoa de Meia-Idade
9.
eNeuro ; 7(5)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33055200

RESUMO

Physiological mirror activity (pMA), observed in healthy human adults, describes the involuntary co-activation of contralateral homologous muscles during unilateral limb movements. Here we provide novel evidence, using neuromuscular measurements (electromyography; EMG), that the amplitude of pMA can be voluntarily inhibited during unilateral isometric contractions of intrinsic hand muscles after informing human participants (10 male, 10 female) about its presence and establishing a basic understanding of pMA mechanisms through a standardized protocol. Importantly, significant suppression of pMA was observed immediately after participants were asked to inhibit it, despite the absence of any online feedback during task execution and without special training. Moreover, we observed that the decrease of pMA was specifically accompanied by an increase in relative frontal δ power recorded with electroencephalography (EEG). Correlation analysis further revealed an inverse association between the individual amplitude of pMA and frontal δ power that reached significance once participants started to inhibit. Taken together, these results suggest that δ power in frontal regions might reflect executive processes exerting inhibitory control over unintentional motor output, in this case pMA. Our results provide an initial reference point for the development of therapeutic applications related to the neurorehabilitation of involuntary movements which could be realized through the suppression of pMA observed in the elderly before it would fully manifest in undesirable overt movement patterns.


Assuntos
Mãos , Contração Isométrica , Adulto , Idoso , Eletroencefalografia , Eletromiografia , Feminino , Humanos , Masculino , Movimento , Músculo Esquelético
10.
Sci Rep ; 10(1): 14524, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883977

RESUMO

Serum brain-derived neurotrophic factor (BDNF) reflects state changes in mood disorders. But its relation to brain changes in depression has rarely been investigated in humans. We assessed the association between serum BDNF, cortical thickness, or gray matter volume in 20 subjects with a minor depressive episode and 40 matched healthy subjects. Serum BDNF positively correlated with cortical thickness and volume in multiple brain regions in the minor depression group: the bilateral medial orbitofrontal cortex and rostral anterior cingulate cortex, left insula, and cingulum, right superior frontal gyrus, and other regions-regions typically affected by major depression. Interestingly, these correlations were driven by subjects with first episode depression. There was no significant association between these imaging parameters and serum BDNF in the healthy control group. Interaction analyses supported this finding. Our findings point to a specific association between serum BDNF and magnetic resonance imaging parameters in first-episode minor depression in a region- and condition-dependent manner. A positive correlation between serum BDNF and structural gray matter estimates was most consistently observed for cortical thickness. We discuss why cortical thickness should be preferred to volumetric estimates for such analyses in future studies. Results of our pilot study have to be proven in future larger-scale studies yielding higher statistical power.


Assuntos
Biomarcadores/sangue , Fator Neurotrófico Derivado do Encéfalo/sangue , Depressão/sangue , Idoso , Córtex Cerebral/diagnóstico por imagem , Depressão/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
11.
Neuroimage ; 207: 116373, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31759114

RESUMO

Variability of neural activity is regarded as a crucial feature of healthy brain function, and several neuroimaging approaches have been employed to assess it noninvasively. Studies on the variability of both evoked brain response and spontaneous brain signals have shown remarkable changes with aging but it is unclear if the different measures of brain signal variability - identified with either hemodynamic or electrophysiological methods - reflect the same underlying physiology. In this study, we aimed to explore age differences of spontaneous brain signal variability with two different imaging modalities (EEG, fMRI) in healthy younger (25 â€‹± â€‹3 years, N â€‹= â€‹135) and older (67 â€‹± â€‹4 years, N â€‹= â€‹54) adults. Consistent with the previous studies, we found lower blood oxygenation level dependent (BOLD) variability in the older subjects as well as less signal variability in the amplitude of low-frequency oscillations (1-12 â€‹Hz), measured in source space. These age-related reductions were mostly observed in the areas that overlap with the default mode network. Moreover, age-related increases of variability in the amplitude of beta-band frequency EEG oscillations (15-25 â€‹Hz) were seen predominantly in temporal brain regions. There were significant sex differences in EEG signal variability in various brain regions while no significant sex differences were observed in BOLD signal variability. Bivariate and multivariate correlation analyses revealed no significant associations between EEG- and fMRI-based variability measures. In summary, we show that both BOLD and EEG signal variability reflect aging-related processes but are likely to be dominated by different physiological origins, which relate differentially to age and sex.


Assuntos
Envelhecimento/fisiologia , Mapeamento Encefálico , Encéfalo/fisiologia , Eletroencefalografia , Adulto , Idoso , Encéfalo/patologia , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/patologia , Adulto Jovem
12.
Sci Rep ; 9(1): 17373, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758009

RESUMO

Animal studies suggest that obesity-related diets induce structural changes in the hypothalamus, a key brain area involved in energy homeostasis. Whether this translates to humans is however largely unknown. Using a novel multimodal approach with manual segmentation, we here show that a higher body mass index (BMI) selectively predicted higher proton diffusivity within the hypothalamus, indicative of compromised microstructure in the underlying tissue, in a well-characterized population-based cohort (n1 = 338, 48% females, age 21-78 years, BMI 18-43 kg/m²). Results were independent from confounders and confirmed in another independent sample (n2 = 236). In addition, while hypothalamic volume was not associated with obesity, we identified a sexual dimorphism and larger hypothalamic volumes in the left compared to the right hemisphere. Using two large samples of the general population, we showed that a higher BMI specifically relates to altered microstructure in the hypothalamus, independent from confounders such as age, sex and obesity-associated co-morbidities. This points to persisting microstructural changes in a key regulatory area of energy homeostasis occurring with excessive weight. Our findings may help to better understand the pathomechanisms of obesity and other eating-related disorders.


Assuntos
Índice de Massa Corporal , Hipotálamo/diagnóstico por imagem , Hipotálamo/ultraestrutura , Obesidade/diagnóstico por imagem , Adulto , Idoso , Estudos de Coortes , Metabolismo Energético/fisiologia , Transtornos da Alimentação e da Ingestão de Alimentos/etiologia , Transtornos da Alimentação e da Ingestão de Alimentos/metabolismo , Transtornos da Alimentação e da Ingestão de Alimentos/patologia , Feminino , Humanos , Hipotálamo/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Obesidade/complicações , Obesidade/patologia , Obesidade/psicologia , Tamanho do Órgão , Caracteres Sexuais , Adulto Jovem
13.
Neuroimage ; 201: 116009, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31302256

RESUMO

Synchronization between oscillatory signals is considered to be one of the main mechanisms through which neuronal populations interact with each other. It is conventionally studied with mass-bivariate measures utilizing either sensor-to-sensor or voxel-to-voxel signals. However, none of these approaches aims at maximizing synchronization, especially when two multichannel datasets are present. Examples include cortico-muscular coherence (CMC), cortico-subcortical interactions or hyperscanning (where electroencephalographic EEG/magnetoencephalographic MEG activity is recorded simultaneously from two or more subjects). For all of these cases, a method which could find two spatial projections maximizing the strength of synchronization would be desirable. Here we present such method for the maximization of coherence between two sets of EEG/MEG/EMG (electromyographic)/LFP (local field potential) recordings. We refer to it as canonical Coherence (caCOH). caCOH maximizes the absolute value of the coherence between the two multivariate spaces in the frequency domain. This allows very fast optimization for many frequency bins. Apart from presenting details of the caCOH algorithm, we test its efficacy with simulations using realistic head modelling and focus on the application of caCOH to the detection of cortico-muscular coherence. For this, we used diverse multichannel EEG and EMG recordings and demonstrate the ability of caCOH to extract complex patterns of CMC distributed across spatial and frequency domains. Finally, we indicate other scenarios where caCOH can be used for the extraction of neuronal interactions.


Assuntos
Algoritmos , Encéfalo/fisiologia , Modelos Neurológicos , Músculo Esquelético/fisiologia , Neurônios/fisiologia , Animais , Conjuntos de Dados como Assunto , Eletroencefalografia , Eletromiografia , Humanos , Magnetoencefalografia , Análise Multivariada
14.
Neuroimage ; 185: 521-533, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30312808

RESUMO

Resting heart rate variability (HRV), an index of parasympathetic cardioregulation and an individual trait marker related to mental and physical health, decreases with age. Previous studies have associated resting HRV with structural and functional properties of the brain - mainly in cortical midline and limbic structures. We hypothesized that aging affects the relationship between resting HRV and brain structure and function. In 388 healthy subjects of three age groups (140 younger: 26.0 ±â€¯4.2 years, 119 middle-aged: 46.3 ±â€¯6.2 years, 129 older: 66.9 ±â€¯4.7 years), gray matter volume (GMV, voxel-based morphometry) and resting state functional connectivity (eigenvector centrality mapping and exploratory seed-based functional connectivity) were related to resting HRV, measured as the root mean square of successive differences (RMSSD). Confirming previous findings, resting HRV decreased with age. For HRV-related GMV, there were no statistically significant differences between the age groups, nor similarities across all age groups. In whole-brain functional connectivity analyses, we found an age-dependent association between resting HRV and eigenvector centrality in the bilateral ventromedial prefrontal cortex (vmPFC), driven by the younger adults. Across all age groups, HRV was positively correlated with network centrality in the bilateral posterior cingulate cortex. Seed-based functional connectivity analysis using the vmPFC cluster revealed an HRV-related cortico-cerebellar network in younger but not in middle-aged or older adults. Our results indicate that the decrease of HRV with age is accompanied by changes in functional connectivity along the cortical midline. This extends our knowledge of brain-body interactions and their changes over the lifespan.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Frequência Cardíaca/fisiologia , Rede Nervosa/fisiologia , Adulto , Fatores Etários , Idoso , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
Neuroimage ; 169: 383-394, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277649

RESUMO

It is well established that musical training induces sensorimotor plasticity. However, there are remarkable differences in how musicians train for proficient stage performance. The present EEG study outlines for the first time clear-cut neurobiological differences between classical and jazz musicians at high and low levels of action planning, revealing genre-specific cognitive strategies adopted in production. Pianists imitated chord progressions without sound that were manipulated in terms of harmony and context length to assess high-level planning of sequence-structure, and in terms of the manner of playing to assess low-level parameter specification of single acts. Jazz pianists revised incongruent harmonies faster as revealed by an earlier reprogramming negativity and beta power decrease, hence neutralising response costs, albeit at the expense of a higher number of manner errors. Classical pianists in turn experienced more conflict during incongruent harmony, as shown by theta power increase, but were more ready to implement the required manner of playing, as indicated by higher accuracy and beta power decrease. These findings demonstrate that specific demands and action focus of training lead to differential weighting of hierarchical action planning. This suggests different enduring markers impressed in the brain when a musician practices one or the other style.


Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Atividade Motora/fisiologia , Música , Plasticidade Neuronal/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Ondas Encefálicas/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
16.
Neuroimage ; 149: 233-243, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28159689

RESUMO

Computational anatomy studies typically use T1-weighted magnetic resonance imaging contrast to look at local differences in cortical thickness or grey matter volume across time or subjects. This type of analysis is a powerful and non-invasive tool to probe anatomical changes associated with neurodevelopment, aging, disease or experience-induced plasticity. However, these comparisons could suffer from biases arising from vascular and metabolic subject- or time-dependent differences. Differences in blood flow and volume could be caused by vasodilation or differences in vascular density, and result in a larger signal contribution of the blood compartment within grey matter voxels. Metabolic changes could lead to differences in dissolved oxygen in brain tissue, leading to T1 shortening. Here, we analyze T1 maps and T1-weighted images acquired during different breathing conditions (ambient air, hypercapnia (increased CO2) and hyperoxia (increased O2)) to evaluate the effect size that can be expected from changes in blood flow, volume and dissolved O2 concentration in computational anatomy studies. Results show that increased blood volume from vasodilation during hypercapnia is associated with an overestimation of cortical thickness (1.85%) and grey matter volume (3.32%), and that both changes in O2 concentration and blood volume lead to changes in the T1 value of tissue. These results should be taken into consideration when interpreting existing morphometry studies and in future study design. Furthermore, this study highlights the overlap in structural and physiological MRI, which are conventionally interpreted as two independent modalities.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
17.
Cereb Cortex ; 27(9): 4537-4548, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27600851

RESUMO

The reciprocal cortico-cerebellar loops that underlie cerebellar contributions to motor and cognitive behavior form one of the largest systems in the primate brain. Work with non-human primates has shown that the dentate nucleus, the major output nucleus of the cerebellum, contains topographically distinct connections to both motor and non-motor regions, yet there is no evidence for how the cerebellar cortex connects to the dentate nuclei in humans. Here we used in-vivo sub-millimeter diffusion imaging to characterize this fundamental component of the cortico-cerebellar loop, and identified a pattern of superior motor and infero-lateral non-motor connectivity strikingly similar to that proposed by animal work. Crucially, we also present first evidence that the dominance for motor connectivity observed in non-human primates may be significantly reduced in man - a finding that is in accordance with the proposed increase in cerebellar contributions to higher cognitive behavior over the course of primate evolution.


Assuntos
Núcleos Cerebelares/fisiologia , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Animais , Mapeamento Encefálico , Cerebelo/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Primatas
18.
J Viral Hepat ; 24(3): 216-225, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27813284

RESUMO

Chronic hepatitis C virus (HCV) infection is associated with fatigue and depression. Cognitive impairments are also reported in a smaller number of HCV-positive patients. Recent studies linked HCV to low-grade inflammation in brain. Here, we test the hypothesis that chronic HCV is associated with 3T-neuroimaging-derived grey matter volume (GMV) and functional connectivity alterations in a sample of chronic HCV (1b), without severe liver disease. Regional GMV and resting-state fMRI-derived eigenvector centrality (EC) were compared between 19 HCV-positive patients and 23 healthy controls (all females, 50-69 and 52-64 years, respectively), controlling for white matter hyperintensities and age. Standard tests were used to assess fatigue, depression and cognitive performance. Also, liver fibrosis stage and viral load were quantified among patients. In comparison with controls, HCV-positive patients had higher scores in fatigue and depression, and worse alertness scores. The groups performed similarly in other cognitive domains. We report higher EC in a cluster in the right anterior superior parietal lobule in patients, while no differences are found in GMV. Post hoc functional connectivity analysis showed increased connectivity of this cluster with primary and secondary somatosensory cortex, and temporal and occipital lobes in patients. Higher mean EC in the superior parietal cluster, adjusted for mean framewise displacement, was associated with better memory and attention performance, but not with fatigue, depression, viral load or level of liver fibrosis, among patients. These results suggest a compensatory mechanism in chronic hepatitis C and explain equivocal results in the literature about cognitive deficits in infected persons. Further studies should define the relation of these connectivity changes to the brain's inflammatory activity.


Assuntos
Encefalite/diagnóstico por imagem , Encefalite/epidemiologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Hepatite C Crônica/complicações , Idoso , Transtornos Cognitivos/epidemiologia , Depressão/epidemiologia , Encefalite/patologia , Fadiga/epidemiologia , Feminino , Humanos , Cirrose Hepática/patologia , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Carga Viral
19.
Neuroimage ; 142: 454-464, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27542722

RESUMO

The ability to predict upcoming structured events based on long-term knowledge and contextual priors is a fundamental principle of human cognition. Tonal music triggers predictive processes based on structural properties of harmony, i.e., regularities defining the arrangement of chords into well-formed musical sequences. While the neural architecture of structure-based predictions during music perception is well described, little is known about the neural networks for analogous predictions in musical actions and how they relate to auditory perception. To fill this gap, expert pianists were presented with harmonically congruent or incongruent chord progressions, either as musical actions (photos of a hand playing chords) that they were required to watch and imitate without sound, or in an auditory format that they listened to without playing. By combining task-based functional magnetic resonance imaging (fMRI) with functional connectivity at rest, we identified distinct sub-regions in right inferior frontal gyrus (rIFG) interconnected with parietal and temporal areas for processing action and audio sequences, respectively. We argue that the differential contribution of parietal and temporal areas is tied to motoric and auditory long-term representations of harmonic regularities that dynamically interact with computations in rIFG. Parsing of the structural dependencies in rIFG is co-determined by both stimulus- or task-demands. In line with contemporary models of prefrontal cortex organization and dual stream models of visual-spatial and auditory processing, we show that the processing of musical harmony is a network capacity with dissociated dorsal and ventral motor and auditory circuits, which both provide the infrastructure for predictive mechanisms optimising action and perception performance.


Assuntos
Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Atividade Motora/fisiologia , Música , Córtex Pré-Frontal/fisiologia , Adulto , Antecipação Psicológica/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
20.
Neurosci Biobehav Rev ; 68: 773-793, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27168344

RESUMO

Negative emotional stimuli are particularly salient events that receive privileged access to neurocognitive resources. At the neural level, the processing of negative stimuli relies on a set of sensory, limbic, and prefrontal areas. However, controversies exist on how demographic and task-related characteristics modulate this brain pattern. Here, we used activation likelihood estimation (ALE) meta-analysis and replicator dynamics to investigate the processing of negative visual stimuli in healthy adults. Our findings endorse the central role of the amygdala. This result might reflect how this structure modulates perceptual and attentional mechanisms in response to emotional stimuli. Additionally, we characterize how the neural processing of negative visual stimuli is influenced by the demographic factors of age and sex as well as by task-related characteristics like stimulus type, emotion category, and task instruction, with the amygdala showing comparable engagement across different sexes, stimulus types, and task instructions. Our findings practically inform experimentation in the affective neurosciences but also suggest brain circuits for neurobiological investigations of affective symptomatology.


Assuntos
Emoções , Tonsila do Cerebelo , Atenção , Mapeamento Encefálico , Humanos , Funções Verossimilhança , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...