Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 9(9): 5420-5432, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31110690

RESUMO

Red-cockaded woodpeckers (RCW; Dryobates borealis) declined after human activities reduced their fire-maintained pine ecosystem to <3% of its historical range in the southeastern United States and degraded remaining habitat. An estimated 1.6 million RCW cooperative breeding groups declined to about 3,500 groups with no more than 10,000 birds by 1978. Management has increased RCW population abundances since they were at their lowest in the 1990s. However, no range-wide study has been undertaken since then to investigate the impacts of this massive bottleneck or infer the effects of conservation management and recent demographic recoveries. We used mitochondrial DNA sequences (mtDNA) and nine nuclear microsatellite loci to determine if range-wide demographic declines resulted in changes to genetic structure and diversity in RCW by comparing samples collected before 1970 (mtDNA data only), between 1992 and 1995 (mtDNA and microsatellites), and between 2010 and 2014 (mtDNA and microsatellites). We show that genetic diversity has been lost as detected by a reduction in the number of mitochondrial haplotypes. This reduction was apparent in comparisons of pre-1970 mtDNA data with data from the 1992-1995 and 2010-2014 time points, with no change between the latter two time points in mtDNA and microsatellite analyses. The mtDNA data also revealed increases in range-wide genetic differentiation, with a genetically panmictic population present throughout the southeastern United States in the pre-1970s data and subsequent development of genetic structure that has remained unchanged since the 1990s. Genetic structure was also uncovered with the microsatellite data, which like the mtDNA data showed little change between the 1992-1995 and 2010-2014 data sets. Temporal haplotype networks revealed a consistent, star-like phylogeny, suggesting that despite the overall loss of haplotypes, no phylogenetically distinct mtDNA lineages were lost when the population declined. Our results may suggest that management during the last two decades has prevented additional losses of genetic diversity.

2.
Sci Adv ; 2(6): e1501682, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27386563

RESUMO

The causes of Late Pleistocene megafaunal extinctions (60,000 to 11,650 years ago, hereafter 60 to 11.65 ka) remain contentious, with major phases coinciding with both human arrival and climate change around the world. The Americas provide a unique opportunity to disentangle these factors as human colonization took place over a narrow time frame (~15 to 14.6 ka) but during contrasting temperature trends across each continent. Unfortunately, limited data sets in South America have so far precluded detailed comparison. We analyze genetic and radiocarbon data from 89 and 71 Patagonian megafaunal bones, respectively, more than doubling the high-quality Pleistocene megafaunal radiocarbon data sets from the region. We identify a narrow megafaunal extinction phase 12,280 ± 110 years ago, some 1 to 3 thousand years after initial human presence in the area. Although humans arrived immediately prior to a cold phase, the Antarctic Cold Reversal stadial, megafaunal extinctions did not occur until the stadial finished and the subsequent warming phase commenced some 1 to 3 thousand years later. The increased resolution provided by the Patagonian material reveals that the sequence of climate and extinction events in North and South America were temporally inverted, but in both cases, megafaunal extinctions did not occur until human presence and climate warming coincided. Overall, metapopulation processes involving subpopulation connectivity on a continental scale appear to have been critical for megafaunal species survival of both climate change and human impacts.


Assuntos
Mudança Climática , Extinção Biológica , Animais , Osso e Ossos/química , Osso e Ossos/metabolismo , Camelidae/classificação , Camelidae/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Felidae/classificação , Felidae/genética , Atividades Humanas , Humanos , Camada de Gelo , Datação Radiométrica , Análise de Sequência de DNA , América do Sul , Ursidae/classificação , Ursidae/genética
3.
J Hered ; 106(6): 719-27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26519513

RESUMO

Melanistic Eurasian red squirrels Sciurus vulgaris are commonly found on the Danish island of Funen. They are thought to represent native Danish squirrel types and are presently under threat from admixture with introduced red squirrels. In response, a conservation program was started in 2009 that involves the translocation of melanistic squirrels from Funen to the squirrel-free island of Langeland. Using mitochondrial DNA of 101 historical and modern samples from throughout Denmark, we assess for the first time population structure and mitochondrial genetic diversity of Danish squirrels compared to its larger pan-Eurasian distribution. We find that Danish squirrels have low levels of genetic diversity, especially melanistic individuals. Bayesian skyline reconstructions show that Danish squirrels have most probably experienced a severe bottleneck within the last 200 years. Also, fine-scale genetic structure was found between squirrels from the regions of Funen, Zealand and Jutland, which mimics the insular geography of Denmark. Additional nuclear DNA analyses will be required to determine the precise admixture levels between original Danish and introduced squirrels and to locate unmixed candidate populations for specific conservation efforts.


Assuntos
Variação Genética , Genética Populacional , Sciuridae/genética , Animais , Teorema de Bayes , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Dinamarca , Dados de Sequência Molecular , Análise de Sequência de DNA
4.
Biol Lett ; 11(3)2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25762573

RESUMO

Hippidions were equids with very distinctive anatomical features. They lived in South America 2.5 million years ago (Ma) until their extinction approximately 10 000 years ago. The evolutionary origin of the three known Hippidion morphospecies is still disputed. Based on palaeontological data, Hippidion could have diverged from the lineage leading to modern equids before 10 Ma. In contrast, a much later divergence date, with Hippidion nesting within modern equids, was indicated by partial ancient mitochondrial DNA sequences. Here, we characterized eight Hippidion complete mitochondrial genomes at 3.4-386.3-fold coverage using target-enrichment capture and next-generation sequencing. Our dataset reveals that the two morphospecies sequenced (H. saldiasi and H. principale) formed a monophyletic clade, basal to extant and extinct Equus lineages. This contrasts with previous genetic analyses and supports Hippidion as a distinct genus, in agreement with palaeontological models. We date the Hippidion split from Equus at 5.6-6.5 Ma, suggesting an early divergence in North America prior to the colonization of South America, after the formation of the Panamanian Isthmus 3.5 Ma and the Great American Biotic Interchange.


Assuntos
DNA Mitocondrial/genética , Equidae/classificação , Fósseis , Genoma Mitocondrial , Animais , Sequência de Bases , Equidae/genética , Evolução Molecular , América do Norte , Filogenia , Análise de Sequência de DNA , América do Sul
5.
Proc Natl Acad Sci U S A ; 111(52): 18655-60, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25453089

RESUMO

Horses, asses, and zebras belong to a single genus, Equus, which emerged 4.0-4.5 Mya. Although the equine fossil record represents a textbook example of evolution, the succession of events that gave rise to the diversity of species existing today remains unclear. Here we present six genomes from each living species of asses and zebras. This completes the set of genomes available for all extant species in the genus, which was hitherto represented only by the horse and the domestic donkey. In addition, we used a museum specimen to characterize the genome of the quagga zebra, which was driven to extinction in the early 1900s. We scan the genomes for lineage-specific adaptations and identify 48 genes that have evolved under positive selection and are involved in olfaction, immune response, development, locomotion, and behavior. Our extensive genome dataset reveals a highly dynamic demographic history with synchronous expansions and collapses on different continents during the last 400 ky after major climatic events. We show that the earliest speciation occurred with gene flow in Northern America, and that the ancestor of present-day asses and zebras dispersed into the Old World 2.1-3.4 Mya. Strikingly, we also find evidence for gene flow involving three contemporary equine species despite chromosomal numbers varying from 16 pairs to 31 pairs. These findings challenge the claim that the accumulation of chromosomal rearrangements drive complete reproductive isolation, and promote equids as a fundamental model for understanding the interplay between chromosomal structure, gene flow, and, ultimately, speciation.


Assuntos
Cromossomos de Mamíferos/genética , Equidae/genética , Evolução Molecular , Extinção Biológica , Fluxo Gênico , África , Animais , América do Norte
6.
Biol Lett ; 10(7)2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25115033

RESUMO

The Capromyidae (hutias) are endemic rodents of the Caribbean and represent a model of dispersal for non-flying mammals in the Greater Antilles. This family has experienced severe extinctions during the Holocene and its phylogenetic affinities with respect to other caviomorph relatives are still debated as morphological and molecular data disagree. We used target enrichment and next-generation sequencing of mitochondrial and nuclear genes to infer the phylogenetic relationships of hutias, estimate their divergence ages, and understand their mode of dispersal in the Greater Antilles.We found that Capromyidae are nested within Echimyidae (spiny rats) and should be considered a subfamily thereof. We estimated that the split between hutias and Atlantic Forest spiny rats occurred 16.5 (14.8­18.2) million years ago (Ma), which is more recent than the GAARlandia land bridge hypothesis (34­35 Ma). This would suggest that during the Early Miocene, an echimyid-like ancestor colonized the Greater Antilles from an eastern South American source population via rafting. The basal divergence of the Hispaniolan Plagiodontia provides further support for a vicariant separation between Hispaniolan and western islands (Bahamas, Cuba, Jamaica) hutias. Recent divergences among these western hutias suggest Plio-Pleistocene dispersal waves associated with glacial cycles.


Assuntos
Filogenia , Roedores/classificação , Roedores/genética , Animais , Sequência de Bases , Evolução Biológica , Região do Caribe , Mitocôndrias/genética , Dados de Sequência Molecular , Filogeografia , RNA Ribossômico/genética , Análise de Sequência de DNA
7.
Syst Biol ; 62(6): 865-77, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23929779

RESUMO

Understanding the evolution of diversity and the resulting systematics in marine systems is confounded by the lack of clear boundaries in oceanic habitats, especially for highly mobile species like marine mammals. Dolphin populations and sibling species often show differentiation between coastal and offshore habitats, similar to the pelagic/littoral or benthic differentiation seen for some species of fish. Here we test the hypothesis that lineages within the polytypic genus Tursiops track past changes in the environment reflecting ecological drivers of evolution facilitated by habitat release. We used a known recent time point for calibration (the opening of the Bosphorus) and whole mitochondrial genome (mitogenome) sequences for high phylogenetic resolution. The pattern of lineage formation suggested an origin in Australasia and several early divisions involving forms currently inhabiting coastal habitats. Radiation in pelagic environments was relatively recent, and was likely followed by a return to coastal habitat in some regions. The timing of some nodes defining different ecotypes within the genus clustered near the two most recent interglacial transitions. A signal for an increase in diversification was also seen for dates after the last glacial maximum. Together these data suggest the tracking of habitat preference during geographic expansions, followed by transition points reflecting habitat shifts, which were likely associated with periods of environmental change.


Assuntos
Organismos Aquáticos , Biodiversidade , Golfinhos/classificação , Golfinhos/genética , Ecossistema , Meio Ambiente , Filogenia , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Dados de Sequência Molecular
8.
Nature ; 499(7456): 74-8, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23803765

RESUMO

The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication.


Assuntos
Evolução Molecular , Genoma/genética , Cavalos/genética , Filogenia , Animais , Conservação dos Recursos Naturais , DNA/análise , DNA/genética , Espécies em Perigo de Extinção , Equidae/classificação , Equidae/genética , Fósseis , Variação Genética/genética , História Antiga , Cavalos/classificação , Proteínas/análise , Proteínas/química , Proteínas/genética , Yukon
9.
PLoS One ; 8(2): e55950, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437078

RESUMO

The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy's zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya).


Assuntos
Genoma Mitocondrial/genética , Genômica , Cavalos/genética , Filogenia , Animais , Teorema de Bayes , Fósseis , Seleção Genética/genética , Fatores de Tempo
10.
BMC Evol Biol ; 11: 65, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21392378

RESUMO

BACKGROUND: Previous DNA-based phylogenetic studies of the Delphinidae family suggest it has undergone rapid diversification, as characterised by unresolved and poorly supported taxonomic relationships (polytomies) for some of the species within this group. Using an increased amount of sequence data we test between alternative hypotheses of soft polytomies caused by rapid speciation, slow evolutionary rate and/or insufficient sequence data, and hard polytomies caused by simultaneous speciation within this family. Combining the mitogenome sequences of five new and 12 previously published species within the Delphinidae, we used Bayesian and maximum-likelihood methods to estimate the phylogeny from partitioned and unpartitioned mitogenome sequences. Further ad hoc tests were then conducted to estimate the support for alternative topologies. RESULTS: We found high support for all the relationships within our reconstructed phylogenies, and topologies were consistent between the Bayesian and maximum-likelihood trees inferred from partitioned and unpartitioned data. Resolved relationships included the placement of the killer whale (Orcinus orca) as sister taxon to the rest of the Globicephalinae subfamily, placement of the Risso's dolphin (Grampus griseus) within the Globicephalinae subfamily, removal of the white-beaked dolphin (Lagenorhynchus albirostris) from the Delphininae subfamily and the placement of the rough-toothed dolphin (Steno bredanensis) as sister taxon to the rest of the Delphininae subfamily rather than within the Globicephalinae subfamily. The additional testing of alternative topologies allowed us to reject all other putative relationships, with the exception that we were unable to reject the hypothesis that the relationship between L. albirostris and the Globicephalinae and Delphininae subfamilies was polytomic. CONCLUSION: Despite their rapid diversification, the increased sequence data yielded by mitogenomes enables the resolution of a strongly supported, bifurcating phylogeny, and a chronology of the divergences within the Delphinidae family. This highlights the benefits and potential application of large mitogenome datasets to resolve long-standing phylogenetic uncertainties.


Assuntos
Golfinhos/genética , Evolução Molecular , Genoma Mitocondrial , Filogenia , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Golfinhos/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Funções Verossimilhança , Análise de Sequência de DNA
11.
Mol Ecol ; 20(3): 629-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21241391

RESUMO

Population genetic structure of North Atlantic killer whale samples was resolved from differences in allele frequencies of 17 microsatellite loci, mtDNA control region haplotype frequencies and for a subset of samples, using complete mitogenome sequences. Three significantly differentiated populations were identified. Differentiation based on microsatellite allele frequencies was greater between the two allopatric populations than between the two pairs of partially sympatric populations. Spatial clustering of individuals within each of these populations overlaps with the distribution of particular prey resources: herring, mackerel and tuna, which each population has been seen predating. Phylogenetic analyses using complete mitogenomes suggested two populations could have resulted from single founding events and subsequent matrilineal expansion. The third population, which was sampled at lower latitudes and lower density, consisted of maternal lineages from three highly divergent clades. Pairwise population differentiation was greater for estimates based on mtDNA control region haplotype frequencies than for estimates based on microsatellite allele frequencies, and there were no mitogenome haplotypes shared among populations. This suggests low or no female migration and that gene flow was primarily male mediated when populations spatially and temporally overlap. These results demonstrate that genetic differentiation can arise through resource specialization in the absence of physical barriers to gene flow.


Assuntos
DNA Mitocondrial/genética , Frequência do Gene/genética , Especiação Genética , Variação Genética , Orca/genética , Animais , Análise por Conglomerados , Demografia , Feminino , Peixes/genética , Genótipo , Haplótipos , Masculino , Repetições de Microssatélites/genética , Filogenia , Análise de Sequência de DNA , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...