Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Neuroendocrinology ; : 1-16, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852578

RESUMO

INTRODUCTION: Protein-enriched diets improve glycemic control in diabetes or emotional behavior in depressive patients. In mice, these benefits depend on intestinal gluconeogenesis activation by di-/tripeptides. Intestinal di-/tripeptides absorption is carried out by the peptide transporter 1, PEPT1. The lack of PEPT1 might thus alter glucose and emotional balance. METHODS: To determine the effects of PEPT1 deficiency under standard dietary conditions or during a dietary challenge known to promote both metabolic and cognitive dysfunction, insulin sensitivity, anxiety, and depressive-like traits, hippocampal serotonin (5-HT) and insulin signaling pathway were measured in wild-type (WT) and Pept1-/- mice fed either a chow or a high-fat high-sucrose (HF-HS) diet. RESULTS: Pept1-/- mice exhibited slight defects in insulin sensitivity and emotional behavior, which were aggravated by an HF-HS diet. Pept1-/- mice fed a chow diet had lower hippocampal 5-HT levels and exhibited cerebral insulin resistance under HF-HS diet. These defects were independent of intestinal gluconeogenesis but might be linked to increased plasma amino acids levels. CONCLUSION: Pept1-/- mice develop prediabetic and depressive-like traits and could thus be used to develop strategies to prevent or cure both diseases.

2.
Obesity (Silver Spring) ; 32(4): 710-722, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311801

RESUMO

OBJECTIVE: Intestinal gluconeogenesis (IGN), via the initiation of a gut-brain nervous circuit, accounts for the metabolic benefits linked to dietary proteins or fermentable fiber in rodents and has been positively correlated with the rapid amelioration of body weight after gastric bypass surgery in humans with obesity. In particular, the activation of IGN moderates the development of hepatic steatosis accompanying obesity. In this study, we investigated the specific effects of IGN on adipose tissue metabolism, independent of its induction by nutritional manipulation. METHODS: We used two transgenic mouse models of suppression or overexpression of G6pc1, the catalytic subunit of glucose-6 phosphatase, which is the key enzyme of endogenous glucose production specifically in the intestine. RESULTS: Under a hypercaloric diet, mice overexpressing IGN showed lower adiposity and higher thermogenic capacities than wild-type mice, featuring marked browning of white adipose tissue (WAT) and prevention of the whitening of brown adipose tissue (BAT). Sympathetic denervation restricted to BAT caused the loss of the antiobesity effects associated with IGN. Conversely, IGN-deficient mice exhibited an increase in adiposity under a standard diet, which was associated with decreased expression of markers of thermogenesis in both BAT and WAT. CONCLUSIONS: IGN is sufficient to activate the sympathetic nervous system and prevent the expansion and the metabolic alterations of BAT and WAT metabolism under a high-calorie diet, thereby preventing the development of obesity. These data increase knowledge of the mechanisms of weight reduction in gastric bypass surgery and pave the way for new approaches to prevent or cure obesity.


Assuntos
Tecido Adiposo Marrom , Gluconeogênese , Humanos , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Gluconeogênese/genética , Obesidade/complicações , Tecido Adiposo Branco/metabolismo , Glucose/metabolismo , Sistema Nervoso Simpático/metabolismo , Termogênese , Metabolismo Energético
3.
Biochimie ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38040189

RESUMO

At the interface between the outside world and the self, the intestine is the first organ receiving nutritional information. One intestinal function, gluconeogenesis, is activated by various nutrients, particularly diets enriched in fiber or protein, and thus results in glucose production in the portal vein in the post-absorptive period. The detection of portal glucose induces a nervous signal controlling the activity of the central nuclei involved in the regulation of metabolism and emotional behavior. Induction of intestinal gluconeogenesis is necessary for the beneficial effects of fiber or protein-enriched diets on metabolism and emotional behavior. Through its ability to translate nutritional information from the diet to the brain's regulatory centers, intestinal gluconeogenesis plays an essential role in maintaining physiological balance.

4.
Food Res Int ; 167: 112723, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087279

RESUMO

While the prevalence of obesity progresses worldwide, the consumption of sugars and dietary fiber increases and decreases, respectively. In this context, NUTRIOSE® soluble fiber is a plant-based food ingredient with beneficial effects in Humans. Here, we studied in mice the mechanisms involved, particularly the involvement of intestinal gluconeogenesis (IGN), the essential function in the beneficial effects of dietary fibers. To determine whether NUTRIOSE® exerts its beneficial effects via the activation of IGN, we studied the effects of dietary NUTRIOSE® on the development of obesity, diabetes and non-alcoholic fatty liver disease (NAFLD), which IGN is able to prevent. To assert the role of IGN in the observed effects, we studied wild-type (WT) and IGN-deficient mice. In line with our hypothesis, NUTRIOSE® exerts metabolic benefits in WT mice, but not in IGN-deficient mice. Indeed, WT mice are protected from body weight gain and NAFLD induced by a high calorie diet. In addition, our data suggests that NUTRIOSE® may improve energy balance by activating a browning process in subcutaneous white adipose tissue. While the gut microbiota composition changes with NUTRIOSE®, this is not sufficient in itself to account for the benefits observed. On the contrary, IGN is obligatory in the NUTRIOSE® benefits, since no benefit take place in absence of IGN. In conclusion, IGN plays a crucial and essential role in the set-up of the beneficial effects of NUTRIOSE®, highlighting the interest of the supplementation of food with healthy ingredients in the context of the current obesity epidemic.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Prebióticos , Humanos , Camundongos , Animais , Gluconeogênese , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Dieta , Metabolismo Energético , Fibras na Dieta/metabolismo , Obesidade/prevenção & controle , Obesidade/metabolismo
5.
J Nutr ; 152(8): 1862-1871, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35511216

RESUMO

BACKGROUND: The role of hepatoportal glucose sensors is poorly understood in the context of insulin resistance. OBJECTIVES: We assessed the effects of glucose infusion in the portal vein on insulin tolerance in 2 rat models of insulin resistance, and the role of capsaicin sensitive nerves in this signal. METHODS: Male Wistar rats, 8 weeks old, weighing 250-275 g, were used. Insulin and glucose tolerance were assessed following a 4-hour infusion of either glucose or saline through catheterization in the portal vein in 3 paradigms. In experiment 1, for diet-induced insulin resistance, rats were fed either a control diet (energy content: proteins = 22.5%, carbohydrates = 64.1%, and lipids = 13.4%) or a high-fat diet (energy content: proteins = 15.3%, carbohydrates = 40.3%, and lipids =44.4%) for 4 months. In experiment 2, for centrally induced peripheral insulin resistance, catheters were inserted in the carotid artery to deliver either an emulsion of triglycerides [intralipid (IL)] or saline towards the brain for 24 hours. In experiment 3, for testing the role of capsaicin-sensitive nerves, experiment 2 was repeated following a periportal treatment with capsaicin or vehicle. RESULTS: In experiment 1, when compared to rats fed the control diet, rats fed the high-fat diet exhibited decreased insulin and glucose tolerance (P ≤ 0.05) that was restored with a glucose infusion in the portal vein (P ≤ 0.05). In experiment 2, infusion of a triglyceride emulsion towards the brain (IL rats) decreased insulin and glucose tolerance and increased hepatic endogenous production when compared to saline-infused rats (P ≤ 0.05). Glucose infusion in the portal vein in IL rats restored insulin and glucose tolerance, as well as hepatic glucose production, to controls levels (P ≤ 0.05). In experiment 3, portal infusion of glucose did not increase insulin tolerance in IL rats that received a periportal pretreatment with capsaicin. CONCLUSIONS: Stimulation of hepatoportal glucose sensors increases insulin tolerance in rat models of insulin resistance and requires the presence of capsaicin-sensitive nerves.


Assuntos
Resistência à Insulina , Insulina , Animais , Glicemia/metabolismo , Capsaicina/metabolismo , Capsaicina/farmacologia , Emulsões/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Insulina Regular Humana/farmacologia , Fígado/metabolismo , Masculino , Fibras Nervosas/metabolismo , Veia Porta/metabolismo , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
6.
Sci Rep ; 12(1): 1415, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082330

RESUMO

Intestinal gluconeogenesis (IGN), gastric bypass (GBP) and gut microbiota positively regulate glucose homeostasis and diet-induced dysmetabolism. GBP modulates gut microbiota, whether IGN could shape it has not been investigated. We studied gut microbiota and microbiome in wild type and IGN-deficient mice, undergoing GBP or not, and fed on either a normal chow (NC) or a high-fat/high-sucrose (HFHS) diet. We also studied fecal and urine metabolome in NC-fed mice. IGN and GBP had a different effect on the gut microbiota of mice fed with NC and HFHS diet. IGN inactivation increased abundance of Deltaproteobacteria on NC and of Proteobacteria such as Helicobacter on HFHS diet. GBP increased abundance of Firmicutes and Proteobacteria on NC-fed WT mice and of Firmicutes, Bacteroidetes and Proteobacteria on HFHS-fed WT mice. The combined effect of IGN inactivation and GBP increased abundance of Actinobacteria on NC and the abundance of Enterococcaceae and Enterobacteriaceae on HFHS diet. A reduction was observed in the amounf of short-chain fatty acids in fecal (by GBP) and in both fecal and urine (by IGN inactivation) metabolome. IGN and GBP, separately or combined, shape gut microbiota and microbiome on NC- and HFHS-fed mice, and modify fecal and urine metabolome.


Assuntos
Derivação Gástrica/métodos , Microbioma Gastrointestinal/fisiologia , Gluconeogênese/fisiologia , Intestinos/metabolismo , Metaboloma , Estômago/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , DNA Bacteriano/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Enterococcaceae/classificação , Enterococcaceae/genética , Enterococcaceae/isolamento & purificação , Ácidos Graxos Voláteis/metabolismo , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Estômago/microbiologia , Estômago/cirurgia
7.
Neuroendocrinology ; 111(6): 555-567, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32516785

RESUMO

INTRODUCTION: Intestinal gluconeogenesis (IGN) exerts metabolic benefits in energy homeostasis via the neural sensing of portal glucose. OBJECTIVE: The aim of this work was to determine central mechanisms involved in the effects of IGN on the control of energy homeostasis. METHODS: We investigated the effects of glucose infusion into the portal vein, at a rate that mimics IGN, in conscious wild-type, leptin-deficient Ob/Ob and calcitonin gene-related peptide (CGRP)-deficient mice. RESULTS: We report that portal glucose infusion decreases food intake and plasma glucose and induces in the hypothalamic arcuate nucleus (ARC) the phosphorylation of STAT3, the classic intracellular messenger of leptin signaling. This notably takes place in POMC-expressing neurons. STAT3 phosphorylation does not require leptin, since portal glucose effects are observed in leptin-deficient Ob/Ob mice. We hypothesized that the portal glucose effects could require CGRP, a neuromediator previously suggested to suppress hunger. In line with this hypothesis, neither the metabolic benefits nor the phosphorylation of STAT3 in the ARC take place upon portal glucose infusion in CGRP-deficient mice. Moreover, intracerebroventricular injection of CGRP activates hypothalamic phosphorylation of STAT3 in mice, and CGRP does the same in hypothalamic cells. Finally, no metabolic benefit of dietary fibers (known to depend on the induction of IGN), takes place in CGRP-deficient mice. CONCLUSIONS: CGRP-induced phosphorylation of STAT3 in the ARC is part of the neural chain determining the hunger-modulating and glucose-lowering effects of IGN/portal glucose.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Gluconeogênese/fisiologia , Glucose/farmacologia , Intestinos/metabolismo , Leptina/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/deficiência , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Glucose/administração & dosagem , Infusões Intravenosas , Leptina/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fosforilação/fisiologia , Veia Porta
8.
Gut ; 69(12): 2193-2202, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32205419

RESUMO

OBJECTIVE: Hepatic steatosis accompanying obesity is a major health concern, since it may initiate non-alcoholic fatty liver disease (NAFLD) and associated complications like cirrhosis or cancer. Intestinal gluconeogenesis (IGN) is a recently described function that contributes to the metabolic benefits of specific macronutrients as protein or soluble fibre, via the initiation of a gut-brain nervous signal triggering brain-dependent regulations of peripheral metabolism. Here, we investigate the effects of IGN on liver metabolism, independently of its induction by the aforementioned macronutrients. DESIGN: To study the specific effects of IGN on hepatic metabolism, we used two transgenic mouse lines: one is knocked down for and the other overexpresses glucose-6-phosphatase, the key enzyme of endogenous glucose production, specifically in the intestine. RESULTS: We report that mice with a genetic overexpression of IGN are notably protected from the development of hepatic steatosis and the initiation of NAFLD on a hypercaloric diet. The protection relates to a diminution of de novo lipogenesis and lipid import, associated with benefits at the level of inflammation and fibrosis and linked to autonomous nervous system. Conversely, mice with genetic suppression of IGN spontaneously exhibit increased hepatic triglyceride storage associated with activated lipogenesis pathway, in the context of standard starch-enriched diet. The latter is corrected by portal glucose infusion mimicking IGN. CONCLUSION: We conclude that IGN per se has the capacity of preventing hepatic steatosis and its eventual evolution toward NAFLD.


Assuntos
Trato Gastrointestinal/metabolismo , Gluconeogênese/fisiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/fisiopatologia , Animais , Quimiocina CCL2/metabolismo , Dieta Hiperlipídica , Interleucina-6/metabolismo , Fígado/inervação , Fígado/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
9.
Mol Metab ; 31: 14-23, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918916

RESUMO

OBJECTIVE: Roux-en-Y gastric surgery (RYGB) promotes a rapid and sustained weight loss and amelioration of glucose control in obese patients. A high number of molecular hypotheses were previously tested using duodenal-jejunal bypass (DJB) performed in various genetic models of mice with knockouts for various hormones or receptors. The data were globally negative or inconsistent. Therefore, the mechanisms remained elusive. Intestinal gluconeogenesis is a gut function that has been suggested to contribute to the metabolic benefits of RYGB in obese patients. METHODS: We studied the effects of DJB on body weight and glucose control in obese mice fed a high fat-high sucrose diet. Wild type mice and mice with a genetic suppression of intestinal gluconeogenesis were studied in parallel using glucose- and insulin-tolerance tests. Fecal losses, including excretion of lipids, were studied from the feces recovered in metabolic cages. RESULTS: DJB induced a dramatic decrease in body weight and improvement in glucose control (glucose- and insulin-tolerance) in obese wild type mice fed a high calorie diet, for 25 days after the surgery. The DJB-induced decrease in food intake was transient and resumed to normal in 7-8 days, suggesting that decreased food intake could not account for the benefits. Total fecal losses were about 5 times and lipid losses 7 times higher in DJB-mice than in control (sham-operated and pair-fed) mice, and could account for the weight loss of mice. The results were comparable in mice with suppression of intestinal gluconeogenesis. There was no effect of DJB on food intake, body weight or fecal loss in lean mice fed a normal chow diet. CONCLUSIONS: DJB in obese mice fed a high calorie diet promotes dramatic fecal loss, which could account for the dramatic weight loss and metabolic benefits observed. This could dominate the effects of the mouse genotype/phenotype. Thus, fecal energy loss should be considered as an essential process contributing to the metabolic benefits of DJB in obese mice.


Assuntos
Derivação Gástrica , Obesidade/metabolismo , Obesidade/cirurgia , Animais , Peso Corporal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...