Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 25(23): 3469-80, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22095494

RESUMO

The new infrared laser spectroscopic techniques enable us to measure the isotopic composition (δ(18)O and δ(2)H) of atmospheric water vapor. With the objective of monitoring the isotopic composition of tropical water vapor (West Africa, South America), and to discuss deuterium excess variability (d=δ(2)H - 8δ(18)O) with an accuracy similar to measurements arising from isotope-ratio mass spectrometry (IRMS), we have conducted a number of tests and calibrations using a wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technique. We focus in this paper on four main aspects regarding (1) the tubing material, (2) the humidity calibration of the instrument, (3) the water vapor concentration effects on δ, and (4) the isotopic calibration of the instrument. First, we show that Synflex tubing strongly affects δ(2)H measurements and thus leads to unusable d values. Second, we show that the mixing ratio as measured by WS-CRDS has to be calibrated versus atmospheric mixing ratio measurements and we also suggest possible non-linear effects over the whole mixing ratio range (~2 to 20 g/kg). Third, we show that significant non-linear effects are induced by water vapor concentration variations on δ measurements, especially for mixing ratios lower than ~5 g/kg. This effect induces a 5 to 10‰ error in deuterium excess and is instrument-dependent. Finally, we show that an isotopic calibration (comparison between measured and true values of isotopic water standards) is needed to avoid errors on deuterium excess that can attain ~10‰.

2.
Nature ; 448(7156): 912-6, 2007 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-17713531

RESUMO

The Milankovitch theory of climate change proposes that glacial-interglacial cycles are driven by changes in summer insolation at high northern latitudes. The timing of climate change in the Southern Hemisphere at glacial-interglacial transitions (which are known as terminations) relative to variations in summer insolation in the Northern Hemisphere is an important test of this hypothesis. So far, it has only been possible to apply this test to the most recent termination, because the dating uncertainty associated with older terminations is too large to allow phase relationships to be determined. Here we present a new chronology of Antarctic climate change over the past 360,000 years that is based on the ratio of oxygen to nitrogen molecules in air trapped in the Dome Fuji and Vostok ice cores. This ratio is a proxy for local summer insolation, and thus allows the chronology to be constructed by orbital tuning without the need to assume a lag between a climate record and an orbital parameter. The accuracy of the chronology allows us to examine the phase relationships between climate records from the ice cores and changes in insolation. Our results indicate that orbital-scale Antarctic climate change lags Northern Hemisphere insolation by a few millennia, and that the increases in Antarctic temperature and atmospheric carbon dioxide concentration during the last four terminations occurred within the rising phase of Northern Hemisphere summer insolation. These results support the Milankovitch theory that Northern Hemisphere summer insolation triggered the last four deglaciations.


Assuntos
Clima , Regiões Antárticas , Atmosfera/química , Dióxido de Carbono/análise , Isótopos de Carbono , Sedimentos Geológicos/química , Efeito Estufa , História Antiga , Camada de Gelo , Modelos Teóricos , Nitrogênio/análise , Oxigênio/análise , Isótopos de Oxigênio , Estações do Ano , Água do Mar/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...