Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; : e0013924, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904400

RESUMO

Enteropathogenic bacteria, such as Salmonella, have been linked to numerous fresh produce outbreaks, posing a significant public health threat. The ability of Salmonella to persist on fresh produce for extended periods is partly attributed to its capacity to form biofilms, which pose a challenge to food decontamination and can increase pathogenic bacterial load in the food chain. Preventing Salmonella colonization of food products and food processing environments is crucial for reducing the incidence of foodborne outbreaks. Understanding the mechanisms of establishment on fresh produce will inform the development of decontamination approaches. We used Transposon-Directed Insertion site Sequencing (TraDIS-Xpress) to investigate the mechanisms used by Salmonella enterica serovar Typhimurium to colonize and establish on fresh produce over time. We established an alfalfa colonization model and compared the findings to those obtained from glass surfaces. Our research identified distinct mechanisms required for Salmonella establishment on alfalfa compared with glass surfaces over time. These include the type III secretion system (sirC), Fe-S cluster assembly (iscA), curcumin degradation (curA), and copper tolerance (cueR). Shared pathways across surfaces included NADH hydrogenase synthesis (nuoA and nuoB), fimbrial regulation (fimA and fimZ), stress response (rpoS), LPS O-antigen synthesis (rfbJ), iron acquisition (ybaN), and ethanolamine utilization (eutT and eutQ). Notably, flagellum biosynthesis differentially impacted the colonization of biotic and abiotic environments over time. Understanding the genetic underpinnings of Salmonella establishment on both biotic and abiotic surfaces over time offers valuable insights that can inform the development of targeted antibacterial therapeutics, ultimately enhancing food safety throughout the food processing chain. IMPORTANCE: Salmonella is the second most costly foodborne illness in the United Kingdom, accounting for £0.2 billion annually, with numerous outbreaks linked to fresh produce, such as leafy greens, cucumbers, tomatoes, and alfalfa sprouts. The ability of Salmonella to colonize and establish itself in fresh produce poses a significant challenge, hindering decontamination efforts and increasing the risk of illness. Understanding the key mechanisms of Salmonella to colonize plants over time is key to finding new ways to prevent and control contamination of fresh produce. This study identified genes and pathways important for Salmonella colonization of alfalfa and compared those with colonization of glass using a genome-wide screen. Genes with roles in flagellum biosynthesis, lipopolysaccharide production, and stringent response regulation varied in their significance between plants and glass. This work deepens our understanding of the requirements for plant colonization by Salmonella, revealing how gene essentiality changes over time and in different environments. This knowledge is key to developing effective strategies to reduce the risk of foodborne disease.

2.
Tree Physiol ; 41(4): 544-561, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32975290

RESUMO

In temperate trees, optimal timing and quality of flowering directly depend on adequate winter dormancy progression, regulated by a combination of chilling and warm temperatures. Physiological, genetic and functional genomic studies have shown that hormones play a key role in bud dormancy establishment, maintenance and release. We combined physiological and transcriptional analyses, quantification of abscisic acid (ABA) and gibberellins (GAs), and modeling to further investigate how these signaling pathways are associated with dormancy progression in the flower buds of two sweet cherry cultivars. Our results demonstrated that GA-associated pathways have distinct functions and may be differentially related with dormancy. In addition, ABA levels rise at the onset of dormancy, associated with enhanced expression of ABA biosynthesis PavNCED genes, and decreased prior to dormancy release. Following the observations that ABA levels are correlated with dormancy depth, we identified PavUG71B6, a sweet cherry UDP-GLYCOSYLTRANSFERASE gene that up-regulates active catabolism of ABA to ABA glucosyl ester (ABA-GE) and may be associated with low ABA content in the early cultivar. Subsequently, we modeled ABA content and dormancy behavior in three cultivars based on the expression of a small set of genes regulating ABA levels. These results strongly suggest the central role of ABA pathway in the control of dormancy progression and open up new perspectives for the development of molecular-based phenological modeling.


Assuntos
Prunus avium , Ácido Abscísico , Flores/genética , Regulação da Expressão Gênica de Plantas , Giberelinas , Dormência de Plantas
3.
BMC Genomics ; 20(1): 974, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830909

RESUMO

BACKGROUND: Bud dormancy is a crucial stage in perennial trees and allows survival over winter to ensure optimal flowering and fruit production. Recent work highlighted physiological and molecular events occurring during bud dormancy in trees. However, they usually examined bud development or bud dormancy in isolation. In this work, we aimed to further explore the global transcriptional changes happening throughout bud development and dormancy onset, progression and release. RESULTS: Using next-generation sequencing and modelling, we conducted an in-depth transcriptomic analysis for all stages of flower buds in several sweet cherry (Prunus avium L.) cultivars that are characterized for their contrasted dates of dormancy release. We find that buds in organogenesis, paradormancy, endodormancy and ecodormancy stages are defined by the expression of genes involved in specific pathways, and these are conserved between different sweet cherry cultivars. In particular, we found that DORMANCY ASSOCIATED MADS-box (DAM), floral identity and organogenesis genes are up-regulated during the pre-dormancy stages while endodormancy is characterized by a complex array of signalling pathways, including cold response genes, ABA and oxidation-reduction processes. After dormancy release, genes associated with global cell activity, division and differentiation are activated during ecodormancy and growth resumption. We then went a step beyond the global transcriptomic analysis and we developed a model based on the transcriptional profiles of just seven genes to accurately predict the main bud dormancy stages. CONCLUSIONS: Overall, this study has allowed us to better understand the transcriptional changes occurring throughout the different phases of flower bud development, from bud formation in the summer to flowering in the following spring. Our work sets the stage for the development of fast and cost effective diagnostic tools to molecularly define the dormancy stages. Such integrative approaches will therefore be extremely useful for a better comprehension of complex phenological processes in many species.


Assuntos
Perfilação da Expressão Gênica/métodos , Dormência de Plantas , Proteínas de Plantas/genética , Prunus avium/fisiologia , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Prunus avium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...