Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 24(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35626508

RESUMO

To take into account the temporal dimension of uncertainty in stock markets, this paper introduces a cross-sectional estimation of stock market volatility based on the intrinsic entropy model. The proposed cross-sectional intrinsic entropy (CSIE) is defined and computed as a daily volatility estimate for the entire market, grounded on the daily traded prices-open, high, low, and close prices (OHLC)-along with the daily traded volume for all symbols listed on The New York Stock Exchange (NYSE) and The National Association of Securities Dealers Automated Quotations (NASDAQ). We perform a comparative analysis between the time series obtained from the CSIE and the historical volatility as provided by the estimators: close-to-close, Parkinson, Garman-Klass, Rogers-Satchell, Yang-Zhang, and intrinsic entropy (IE), defined and computed from historical OHLC daily prices of the Standard & Poor's 500 index (S&P500), Dow Jones Industrial Average (DJIA), and the NASDAQ Composite index, respectively, for various time intervals. Our study uses an approximate 6000-day reference point, starting 1 January 2001, until 23 January 2022, for both the NYSE and the NASDAQ. We found that the CSIE market volatility estimator is consistently at least 10 times more sensitive to market changes, compared to the volatility estimate captured through the market indices. Furthermore, beta values confirm a consistently lower volatility risk for market indices overall, between 50% and 90% lower, compared to the volatility risk of the entire market in various time intervals and rolling windows.

2.
Entropy (Basel) ; 23(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921771

RESUMO

Grasping the historical volatility of stock market indices and accurately estimating are two of the major focuses of those involved in the financial securities industry and derivative instruments pricing. This paper presents the results of employing the intrinsic entropy model as a substitute for estimating the volatility of stock market indices. Diverging from the widely used volatility models that take into account only the elements related to the traded prices, namely the open, high, low, and close prices of a trading day (OHLC), the intrinsic entropy model takes into account the traded volumes during the considered time frame as well. We adjust the intraday intrinsic entropy model that we introduced earlier for exchange-traded securities in order to connect daily OHLC prices with the ratio of the corresponding daily volume to the overall volume traded in the considered period. The intrinsic entropy model conceptualizes this ratio as entropic probability or market credence assigned to the corresponding price level. The intrinsic entropy is computed using historical daily data for traded market indices (S&P 500, Dow 30, NYSE Composite, NASDAQ Composite, Nikkei 225, and Hang Seng Index). We compare the results produced by the intrinsic entropy model with the volatility estimates obtained for the same data sets using widely employed industry volatility estimators. The intrinsic entropy model proves to consistently deliver reliable estimates for various time frames while showing peculiarly high values for the coefficient of variation, with the estimates falling in a significantly lower interval range compared with those provided by the other advanced volatility estimators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...