Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Comput Graph Appl ; 40(3): 105-111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32356732

RESUMO

Modern computer graphics courses require students to complete assignments involving computer programming. The evaluation of student programs, either by the student (self-assessment) or by the instructors (grading) can take a considerable amount of time and does not scale well with large groups. Interactive judges giving a pass/fail verdict do constitute a scalable solution, but they only provide feedback on output correctness. In this article, we present a tool to provide extensive feedback on student submissions. The feedback is based both on checking the output against test sets, as well as on syntactic and semantic analysis of the code. These analyses are performed through a set of code features and instructor-defined rubrics. The tool is built with Python and supports shader programs written in GLSL. Our experiments demonstrate that the tool provides extensive feedback that can be useful to support self-assessment, facilitate grading, and identify frequent programming mistakes.

2.
Artigo em Inglês | MEDLINE | ID: mdl-30207955

RESUMO

The analysis of protein-ligand interactions is a time-intensive task. Researchers have to analyze multiple physico-chemical properties of the protein at once and combine them to derive conclusions about the protein-ligand interplay. Typically, several charts are inspected, and 3D animations can be played side-by-side to obtain a deeper understanding of the data. With the advances in simulation techniques, larger and larger datasets are available, with up to hundreds of thousands of steps. Unfortunately, such large trajectories are very difficult to investigate with traditional approaches. Therefore, the need for special tools that facilitate inspection of these large trajectories becomes substantial. In this paper, we present a novel system for visual exploration of very large trajectories in an interactive and user-friendly way. Several visualization motifs are automatically derived from the data to give the user the information about interactions between protein and ligand. Our system offers specialized widgets to ease and accelerate data inspection and navigation to interesting parts of the simulation. The system is suitable also for simulations where multiple ligands are involved. We have tested the usefulness of our tool on a set of datasets obtained from protein engineers, and we describe the expert feedback.

3.
IEEE Trans Vis Comput Graph ; 23(1): 731-740, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27875187

RESUMO

Molecular simulations are used in many areas of biotechnology, such as drug design and enzyme engineering. Despite the development of automatic computational protocols, analysis of molecular interactions is still a major aspect where human comprehension and intuition are key to accelerate, analyze, and propose modifications to the molecule of interest. Most visualization algorithms help the users by providing an accurate depiction of the spatial arrangement: the atoms involved in inter-molecular contacts. There are few tools that provide visual information on the forces governing molecular docking. However, these tools, commonly restricted to close interaction between atoms, do not consider whole simulation paths, long-range distances and, importantly, do not provide visual cues for a quick and intuitive comprehension of the energy functions (modeling intermolecular interactions) involved. In this paper, we propose visualizations designed to enable the characterization of interaction forces by taking into account several relevant variables such as molecule-ligand distance and the energy function, which is essential to understand binding affinities. We put emphasis on mapping molecular docking paths obtained from Molecular Dynamics or Monte Carlo simulations, and provide time-dependent visualizations for different energy components and particle resolutions: atoms, groups or residues. The presented visualizations have the potential to support domain experts in a more efficient drug or enzyme design process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...