Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(8): eadk2949, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394194

RESUMO

Gravity differs from all other known fundamental forces because it is best described as a curvature of space-time. For that reason, it remains resistant to unifications with quantum theory. Gravitational interaction is fundamentally weak and becomes prominent only at macroscopic scales. This means, we do not know what happens to gravity in the microscopic regime where quantum effects dominate and whether quantum coherent effects of gravity become apparent. Levitated mechanical systems of mesoscopic size offer a probe of gravity, while still allowing quantum control over their motional state. This regime opens the possibility of table-top testing of quantum superposition and entanglement in gravitating systems. Here, we show gravitational coupling between a levitated submillimeter-scale magnetic particle inside a type I superconducting trap and kilogram source masses, placed approximately half a meter away. Our results extend gravity measurements to low gravitational forces of attonewton and underline the importance of levitated mechanical sensors.

2.
Entropy (Basel) ; 24(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36421497

RESUMO

Magnetically levitated microparticles have been proposed as mechanical sensors with extreme sensitivity. In particular, micromagnets levitated above a superconductor can achieve very low levels of dissipation and thermal noise. In this paper, we review recent initial experiments and discuss the potential for using these systems as sensors of magnetic fields and rotational motion, as well as possible applications to fundamental physics.

3.
Phys Rev Lett ; 127(7): 070801, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34459646

RESUMO

We discuss the fundamental noise limitations of a ferromagnetic torque sensor based on a levitated magnet in the tipping regime. We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit. We find that the energy resolution limit, pointed out in recent literature as a relevant benchmark for most classes of magnetometers, can be surpassed by many orders of magnitude. Moreover, similarly to the case of a ferromagnetic gyroscope, it is also possible to surpass the standard quantum limit for magnetometry with independent spins, arising from spin-projection noise. Our finding indicates that magnetomechanical systems optimized for magnetometry can achieve a magnetic field resolution per unit volume several orders of magnitude better than any conventional magnetometer. We discuss possible implications, focusing on fundamental physics problems such as the search for exotic interactions beyond the standard model.

4.
Phys Rev Lett ; 125(14): 140801, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064533

RESUMO

Zel'dovich proposed that electromagnetic (EM) waves with angular momentum reflected from a rotating metallic, lossy cylinder will be amplified. However, we are still lacking a direct experimental EM-wave verification of this fifty-year-old prediction due to the challenging conditions in which the phenomenon manifests itself: the mechanical rotation frequency of the cylinder must be comparable with the EM oscillation frequency. Here, we propose an experimental approach that solves this issue and is predicted to lead to a measurable Zel'dovich amplification with existing superconducting circuit technology. We design a superconducting circuit with low frequency EM modes that couple through free space to a magnetically levitated and spinning microsphere placed at the center of the circuit. We theoretically estimate the circuit EM mode gain and show that rotation of the microsphere can lead to experimentally observable amplification, thus paving the way for the first EM-field experimental demonstration of Zel'dovich amplification.

5.
Phys Rev Lett ; 125(24): 241301, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33412056

RESUMO

Some of the most prominent theoretical predictions of modern times, e.g., the Unruh effect, Hawking radiation, and gravity-assisted particle creation, are supported by from the fact that various quantum constructs like particle content and vacuum fluctuations of a quantum field are observer-dependent. Despite being fundamental in nature, these predictions have not yet been experimentally verified because one needs extremely strong gravity (or acceleration) to bring them within the existing experimental resolution. In this Letter, we demonstrate that a post-Newtonian rotating atom inside a far-detuned cavity experiences strongly modified quantum fluctuations in the inertial vacuum. As a result, the emission rate of an excited atom gets enhanced significantly along with a shift in the emission spectrum due to the change in the quantum correlation under rotation. We propose an optomechanical setup that is capable of realizing such acceleration-induced particle creation with current technology. This provides a novel and potentially feasible experimental proposal for the direct detection of noninertial quantum field theoretic effects.

6.
Phys Rev Lett ; 118(2): 021302, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28128622

RESUMO

A search for a new scalar field, called moduli, has been performed using the cryogenic resonant-mass AURIGA detector. Predicted by string theory, moduli may provide a significant contribution to the dark matter (DM) component of our Universe. If this is the case, the interaction of ordinary matter with the local DM moduli, forming the Galaxy halo, will cause an oscillation of solid bodies with a frequency corresponding to the mass of moduli. In the sensitive band of AURIGA, some 100 Hz at around 1 kHz, the expected signal, with Q=△f/f∼10^{6}, is a narrow peak, △f∼1 mHz. Here the detector strain sensitivity is h_{s}∼2×10^{-21} Hz^{-1/2}, within a factor of 2. These numbers translate to upper limits at 95% C.L. on the moduli coupling to ordinary matter (d_{e}+d_{m_{e}})≲10^{-5} around masses m_{ϕ}=3.6×10^{-12} eV, for the standard DM halo model with ρ_{DM}=0.3 GeV/cm^{3}.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...